清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Classification of 12-lead ECGs: the PhysioNet/Computing in Cardiology Challenge 2020

概化理论 医学诊断 计算机科学 机器学习 公制(单位) 人工智能 源代码 数据挖掘 算法 医学 统计 工程类 数学 运营管理 病理 操作系统
作者
Erick Andres Perez Alday,Annie Gu,Amit Shah,Chad Robichaux,An-Kwok Ian Wong,Chengyu Liu,Feifei Liu,Ali Bahrami Rad,Andoni Elola,Salman Seyedi,Qiao Li,Ashish Sharma,Gari D. Clifford,Matthew A. Reyna
出处
期刊:Physiological Measurement [IOP Publishing]
卷期号:41 (12): 124003-124003 被引量:372
标识
DOI:10.1088/1361-6579/abc960
摘要

Abstract Objective : Vast 12-lead ECGs repositories provide opportunities to develop new machine learning approaches for creating accurate and automatic diagnostic systems for cardiac abnormalities. However, most 12-lead ECG classification studies are trained, tested, or developed in single, small, or relatively homogeneous datasets. In addition, most algorithms focus on identifying small numbers of cardiac arrhythmias that do not represent the complexity and difficulty of ECG interpretation. This work addresses these issues by providing a standard, multi-institutional database and a novel scoring metric through a public competition: the PhysioNet/Computing in Cardiology Challenge 2020. Approach : A total of 66 361 12-lead ECG recordings were sourced from six hospital systems from four countries across three continents; 43 101 recordings were posted publicly with a focus on 27 diagnoses. For the first time in a public competition, we required teams to publish open-source code for both training and testing their algorithms, ensuring full scientific reproducibility. Main results : A total of 217 teams submitted 1395 algorithms during the Challenge, representing a diversity of approaches for identifying cardiac abnormalities from both academia and industry. As with previous Challenges, high-performing algorithms exhibited significant drops ( 10%) in performance on the hidden test data. Significance : Data from diverse institutions allowed us to assess algorithmic generalizability. A novel evaluation metric considered different misclassification errors for different cardiac abnormalities, capturing the outcomes and risks of different diagnoses. Requiring both trained models and code for training models improved the generalizability of submissions, setting a new bar in reproducibility for public data science competitions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
旺旺大礼包完成签到,获得积分10
6秒前
Marshall发布了新的文献求助10
11秒前
ding应助samsahpiyaz采纳,获得10
38秒前
40秒前
afar发布了新的文献求助10
45秒前
49秒前
49秒前
samsahpiyaz发布了新的文献求助10
53秒前
Marshall发布了新的文献求助10
1分钟前
Stella应助samsahpiyaz采纳,获得10
1分钟前
YuLu完成签到 ,获得积分10
1分钟前
nini发布了新的文献求助10
1分钟前
若为雄才完成签到,获得积分10
1分钟前
慕青应助nini采纳,获得10
1分钟前
牛初辰完成签到 ,获得积分10
2分钟前
afar完成签到,获得积分10
2分钟前
香丿完成签到 ,获得积分10
2分钟前
gwbk完成签到,获得积分10
2分钟前
3分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
wangfaqing942完成签到 ,获得积分10
3分钟前
随心所欲完成签到 ,获得积分10
3分钟前
火星上惜天完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
juan完成签到 ,获得积分0
4分钟前
4分钟前
sunialnd完成签到,获得积分10
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
所所应助leinei采纳,获得10
6分钟前
gkads完成签到,获得积分10
7分钟前
Criminology34应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
Yxy2021完成签到 ,获得积分10
8分钟前
两个榴莲完成签到,获得积分0
8分钟前
大胆的碧菡完成签到,获得积分10
8分钟前
11分钟前
田様应助liuyingjuan829采纳,获得10
11分钟前
liuyingjuan829完成签到,获得积分20
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595816
求助须知:如何正确求助?哪些是违规求助? 4681007
关于积分的说明 14818254
捐赠科研通 4653702
什么是DOI,文献DOI怎么找? 2535701
邀请新用户注册赠送积分活动 1503575
关于科研通互助平台的介绍 1469783