Multi-Channel Sellers Traffic Allocation in Large-scale E-commerce Promotion

计算机科学 启发式 频道(广播) 晋升(国际象棋) 游戏娱乐 渲染(计算机图形) 电信 人工智能 艺术 政治 法学 视觉艺术 政治学 操作系统
作者
Xin Shen,Yizhou Ye,Martin Ester,Cheng Long,Jie Zhang,Zhao Li,Kaiying Yuan,Yanghua Li
标识
DOI:10.1145/3340531.3412730
摘要

Large-scale online promotions, such as Double 11 and Black Friday, are of great value to e-commerce platforms nowadays. Traditional methods are not successful when we aim to maximize global Gross Merchandise Volume (GMV) in the promotion scenarios due to three limitations. The first is that the GMV of sellers varies significantly from daily scenarios to promotions. Second, these methods do not consider explosive demands in promotions, so that a consumer may fail to purchase some popular items due to sellers' limited capacities. Third, the traffic distribution over sellers presents divergence in different channels, thus rendering the performance of the traditional single-channel methods far from optimal in creating commercial values. To address these problems, we design a Multi-Channel Sellers Traffic Allocation (MCSTA) optimization model to obtain optimal page view (PV) distribution concerning global GMV. Then we propose a general constrained non-smooth convex optimization solution with a Multi-Objective Shortest Distance (MOSD) hyperparameter tuning method to solve MCSTA. This is the first work to systematically address this issue in the scenario of large-scale online promotions. The empirical results show that MCSTA achieves significant improvement of GMV by 1.1% based on A/B test during Alibaba's "Global Shopping Festival", one of the world's largest online sales events. Furthermore, we deploy MCSTA in other popular scenarios, including everyday promotion and video live stream service, to showcase that MCSTA can be widely applied in e-commerce and online entertainment services.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助rixinsu采纳,获得30
刚刚
开放青旋应助小鱼采纳,获得20
1秒前
1秒前
SONG完成签到,获得积分10
1秒前
ZhaoYu发布了新的文献求助20
2秒前
2秒前
Oaizil完成签到,获得积分20
2秒前
JamesPei应助完美修杰采纳,获得10
2秒前
3秒前
stiger应助咩咩采纳,获得10
3秒前
206拧绳哥发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
4秒前
tomorrow完成签到 ,获得积分10
5秒前
传奇3应助liaoyoujiao采纳,获得10
5秒前
6秒前
6秒前
曾经不言发布了新的文献求助10
6秒前
6秒前
zhaoyuepu完成签到,获得积分10
6秒前
MchemG应助LJY采纳,获得30
7秒前
7秒前
8秒前
9秒前
Simoni发布了新的文献求助10
9秒前
9秒前
Oaizil发布了新的文献求助30
9秒前
DAdump1ing完成签到,获得积分10
10秒前
ZhaoYu发布了新的文献求助10
10秒前
10秒前
隐形曼青应助天天看文献采纳,获得10
11秒前
点一个随机昵称完成签到,获得积分10
11秒前
zhaoyuepu发布了新的文献求助10
12秒前
小二郎应助安详的韩庆采纳,获得10
12秒前
852应助畅快夏柳采纳,获得10
12秒前
天天快乐应助心平气和采纳,获得10
13秒前
13秒前
搜集达人应助OPV-Small-cui采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5702789
求助须知:如何正确求助?哪些是违规求助? 5148550
关于积分的说明 15237687
捐赠科研通 4857440
什么是DOI,文献DOI怎么找? 2606434
邀请新用户注册赠送积分活动 1557673
关于科研通互助平台的介绍 1515518