振荡(细胞信号)
数学
核(代数)
二次方程
功能(生物学)
分数阶微积分
数学分析
二次函数
类型(生物学)
应用数学
班级(哲学)
纯数学
计算机科学
生态学
进化生物学
遗传学
人工智能
生物
几何学
作者
Bahaaeldin Abdalla,Thabet Abdeljawad
标识
DOI:10.3934/dcdss.2020443
摘要
<p style='text-indent:20px;'>In this work, we examine the oscillation of a class fractional differential equations in the frame of generalized nonlocal fractional derivatives with function dependent kernel type. We present sufficient conditions to prove the oscillation criteria in both of the Riemann-Liouville (RL) and Caputo types. Taking particular cases of the nondecreasing function appearing in the kernel of the treated fractional derivative recovers the oscillation of several proven results investigated previously in literature. Two examples, where the kernel function is quadratic and cubic polynomial, have been given to support the validity of the proven results for the RL and Caputo cases, respectively.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI