已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Random forests for global sensitivity analysis: A selective review

灵敏度(控制系统) 随机森林 排名(信息检索) 参数统计 计算机科学 关系(数据库) 维数(图论) 排列(音乐) 变量(数学) 非参数统计 回归 随机变量 数据挖掘 机器学习 数学 数学优化 计量经济学 统计 工程类 物理 数学分析 声学 电子工程 纯数学
作者
Anestis Antoniadis,Sophie Lambert‐Lacroix,Jean‐Michel Poggi
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:206: 107312-107312 被引量:130
标识
DOI:10.1016/j.ress.2020.107312
摘要

The understanding of many physical and engineering problems involves running complex computational models. Such models take as input a high number of numerical and physical explanatory variables. The information on these underlying input parameters is often limited or uncertain. It is therefore important, based on the relationships between the input variables and the output, to identify and prioritize the most influential inputs. One may use global sensitivity analysis (GSA) methods which aim at ranking input random variables according to their importance in the output uncertainty, or even quantify the global influence of a particular input on the output. Using sensitivity metrics to ignore less important parameters is a form of dimension reduction in the model’s input parameter space. This suggests the use of meta-modeling as a quantitative approach for nonparametric GSA, where the original input/output relation is first approximated using various statistical regression techniques. Subsequently, the main goal of our work is to provide a comprehensive review paper in the domain of sensitivity analysis focusing on some interesting connections between random forests and GSA. The idea is to use a random forests methodology as an efficient non-parametric approach for building meta-models that allow an efficient sensitivity analysis. Apart its easy applicability to regression problems, the random forests approach presents further strong advantages by its ability to implicitly deal with correlation and high dimensional data, to handle interactions between variables and to identify informative inputs using a permutation based RF variable importance index which is easy and fast to compute. We further review an adequate set of tools for quantifying variable importance which are then exploited to reduce the model’s dimension enabling otherwise infeasible sensibility analysis studies. Numerical results from several simulations and a data exploration on a real dataset are presented to illustrate the effectiveness of such an approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
半山完成签到,获得积分10
1秒前
顺心碧菡完成签到,获得积分10
2秒前
4秒前
4秒前
香菜发布了新的文献求助10
6秒前
Capybara发布了新的文献求助10
7秒前
聪慧的凡灵应助yy123采纳,获得10
7秒前
9秒前
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
张海洋应助科研通管家采纳,获得10
9秒前
冰魂应助科研通管家采纳,获得30
9秒前
张海洋应助科研通管家采纳,获得10
9秒前
冰魂应助科研通管家采纳,获得10
9秒前
yanyifan发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
YUYUYU完成签到 ,获得积分10
15秒前
早睡能长个完成签到,获得积分10
16秒前
Orange发布了新的文献求助10
16秒前
李秀丽完成签到,获得积分10
16秒前
17秒前
丘比特应助遇楹采纳,获得10
17秒前
17秒前
李清完成签到 ,获得积分10
17秒前
Phil发布了新的文献求助10
19秒前
大模型应助alex采纳,获得10
19秒前
yar给2150号的求助进行了留言
24秒前
26秒前
传奇3应助初昀杭采纳,获得10
26秒前
27秒前
之组长了完成签到 ,获得积分10
29秒前
Suyi完成签到,获得积分10
31秒前
32秒前
遇楹发布了新的文献求助10
32秒前
张奶昔完成签到,获得积分10
32秒前
32秒前
LFY完成签到 ,获得积分10
32秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885614
求助须知:如何正确求助?哪些是违规求助? 3427657
关于积分的说明 10756256
捐赠科研通 3152598
什么是DOI,文献DOI怎么找? 1740402
邀请新用户注册赠送积分活动 840237
科研通“疑难数据库(出版商)”最低求助积分说明 785236