亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Random forests for global sensitivity analysis: A selective review

灵敏度(控制系统) 随机森林 排名(信息检索) 参数统计 计算机科学 关系(数据库) 维数(图论) 排列(音乐) 变量(数学) 非参数统计 回归 随机变量 数据挖掘 机器学习 数学 数学优化 计量经济学 统计 工程类 数学分析 物理 电子工程 声学 纯数学
作者
Anestis Antoniadis,Sophie Lambert‐Lacroix,Jean‐Michel Poggi
出处
期刊:Reliability Engineering & System Safety [Elsevier BV]
卷期号:206: 107312-107312 被引量:319
标识
DOI:10.1016/j.ress.2020.107312
摘要

The understanding of many physical and engineering problems involves running complex computational models. Such models take as input a high number of numerical and physical explanatory variables. The information on these underlying input parameters is often limited or uncertain. It is therefore important, based on the relationships between the input variables and the output, to identify and prioritize the most influential inputs. One may use global sensitivity analysis (GSA) methods which aim at ranking input random variables according to their importance in the output uncertainty, or even quantify the global influence of a particular input on the output. Using sensitivity metrics to ignore less important parameters is a form of dimension reduction in the model’s input parameter space. This suggests the use of meta-modeling as a quantitative approach for nonparametric GSA, where the original input/output relation is first approximated using various statistical regression techniques. Subsequently, the main goal of our work is to provide a comprehensive review paper in the domain of sensitivity analysis focusing on some interesting connections between random forests and GSA. The idea is to use a random forests methodology as an efficient non-parametric approach for building meta-models that allow an efficient sensitivity analysis. Apart its easy applicability to regression problems, the random forests approach presents further strong advantages by its ability to implicitly deal with correlation and high dimensional data, to handle interactions between variables and to identify informative inputs using a permutation based RF variable importance index which is easy and fast to compute. We further review an adequate set of tools for quantifying variable importance which are then exploited to reduce the model’s dimension enabling otherwise infeasible sensibility analysis studies. Numerical results from several simulations and a data exploration on a real dataset are presented to illustrate the effectiveness of such an approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
khan发布了新的文献求助10
刚刚
khan发布了新的文献求助10
刚刚
khan发布了新的文献求助30
刚刚
爆米花应助长情胡萝卜采纳,获得10
8秒前
15秒前
21秒前
uikymh完成签到 ,获得积分0
29秒前
Orange应助科研通管家采纳,获得10
30秒前
浮游应助科研通管家采纳,获得10
31秒前
Jasper应助khan采纳,获得10
52秒前
Akim应助khan采纳,获得10
52秒前
1分钟前
Slhy发布了新的文献求助10
1分钟前
1分钟前
1分钟前
乐观的颦完成签到,获得积分10
1分钟前
葛力完成签到,获得积分10
1分钟前
我是老大应助咕咕咕采纳,获得10
2分钟前
Slhy完成签到,获得积分10
2分钟前
LLL完成签到,获得积分10
2分钟前
执着南琴发布了新的文献求助10
2分钟前
深情安青应助LLL采纳,获得10
2分钟前
小二郎应助科研通管家采纳,获得150
2分钟前
2分钟前
受伤白猫完成签到 ,获得积分20
2分钟前
科研通AI2S应助Lliu采纳,获得10
2分钟前
3分钟前
wangwangxiao完成签到 ,获得积分10
3分钟前
Zhaoyuemeng完成签到 ,获得积分10
3分钟前
积极的觅松完成签到 ,获得积分10
3分钟前
orixero应助棠真采纳,获得10
3分钟前
3分钟前
Gryff完成签到 ,获得积分10
3分钟前
lalala完成签到,获得积分10
3分钟前
棠真发布了新的文献求助10
3分钟前
3分钟前
3分钟前
星辰大海应助长情胡萝卜采纳,获得10
3分钟前
咕咕咕发布了新的文献求助10
3分钟前
Cassie发布了新的文献求助30
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Extreme ultraviolet pellicle cooling by hydrogen gas flow (Conference Presentation) 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5173641
求助须知:如何正确求助?哪些是违规求助? 4363391
关于积分的说明 13585419
捐赠科研通 4211912
什么是DOI,文献DOI怎么找? 2310074
邀请新用户注册赠送积分活动 1309172
关于科研通互助平台的介绍 1256552