Data-driven damage diagnosis under environmental and operational variability by novel statistical pattern recognition methods

自回归模型 分歧(语言学) 计算机科学 水准点(测量) 模式识别(心理学) 特征提取 数据挖掘 Kullback-Leibler散度 残余物 分拆(数论) 人工智能 特征(语言学) 机器学习 算法 数学 统计 哲学 组合数学 语言学 地理 大地测量学
作者
Alireza Entezami,Hashem Shariatmadar,Abbas Karamodin
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:18 (5-6): 1416-1443 被引量:84
标识
DOI:10.1177/1475921718800306
摘要

Feature extraction by time-series analysis and decision making through distance-based methods are powerful and efficient statistical pattern recognition techniques for data-driven structural health monitoring. The motivation of this article is to propose an innovative residual-based feature extraction approach based on AutoRegressive modeling and a novel statistical distance method named as Partition-based Kullback–Leibler Divergence for damage detection and localization by using randomly high-dimensional damage-sensitive features under environmental and operational variability. The key novel element of the proposed feature extraction approach is to establish a two-stage offline and online learning algorithms for extracting the residuals of AutoRegressive model as the main damage-sensitive features. This technique brings the great benefit of reducing the computational time and storage space for feature extraction in long-term monitoring conditions. The major contribution of Partition-based Kullback–Leibler Divergence method is to exploit a partitioning strategy for dividing random features into individual partitions and utilize numerical information of partitioning in distance calculation rather than directly applying random samples. Dealing with the major challenging issue of using the high-dimensional features in decision making and applicability to both correlated and uncorrelated random datasets are the main advantages of Partition-based Kullback–Leibler Divergence method. The accuracy and reliability of the proposed approaches are experimentally validated by two well-known benchmark structures. The stationarity and linearity of measured vibration responses for using in AutoRegressive modeling are evaluated by two hypothesis tests. Comparative studies are also conducted to demonstrate the superiority of the proposed methods over some exciting state-of-the-art techniques. Results show that the methods presented here succeed in detecting and locating damage and make time-saving and efficient tools for feature extraction and damage diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
天天快乐应助ssll采纳,获得10
1秒前
1秒前
方远锋完成签到,获得积分10
2秒前
Akim应助我又可以了采纳,获得10
2秒前
卢小白发布了新的文献求助10
2秒前
沉静胜发布了新的文献求助10
2秒前
3秒前
guobiao发布了新的文献求助10
3秒前
小蜜蜂发布了新的文献求助10
3秒前
3秒前
4秒前
南冥完成签到 ,获得积分10
4秒前
5秒前
眼睛大的一斩完成签到,获得积分20
5秒前
5秒前
天天快乐应助完美梨愁采纳,获得10
7秒前
顺心毛巾完成签到,获得积分10
7秒前
熙梓日记发布了新的文献求助10
7秒前
酷波er应助iii采纳,获得10
8秒前
大模型应助淡淡的秋寒采纳,获得10
8秒前
8秒前
悠悠完成签到,获得积分10
9秒前
JerryZ发布了新的文献求助10
10秒前
YG发布了新的文献求助10
10秒前
xiaoloong完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
热心市民小红花应助louyu采纳,获得10
12秒前
12秒前
陈一口完成签到 ,获得积分10
12秒前
赘婿应助想飞的猪采纳,获得10
13秒前
tqmx完成签到,获得积分10
14秒前
CipherSage应助俏皮的孤丹采纳,获得30
14秒前
星星星发布了新的文献求助10
14秒前
14秒前
丰知然应助Noob_saibot采纳,获得10
15秒前
15秒前
Frank完成签到,获得积分10
15秒前
KKLUV完成签到,获得积分10
15秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Learning to Listen, Listening to Learn 570
The Psychology of Advertising (5th edition) 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3873461
求助须知:如何正确求助?哪些是违规求助? 3415791
关于积分的说明 10695784
捐赠科研通 3140027
什么是DOI,文献DOI怎么找? 1732506
邀请新用户注册赠送积分活动 835423
科研通“疑难数据库(出版商)”最低求助积分说明 781968