Deep Learning With Sampling in Colon Cancer Histology

加权 人工智能 模式识别(心理学) 采样(信号处理) 计算机科学 图像处理 数学 图像(数学) 计算机视觉 医学 放射科 滤波器(信号处理)
作者
Mary Shapcott,Katherine Hewitt,Nasir Rajpoot
出处
期刊:Frontiers in Bioengineering and Biotechnology [Frontiers Media SA]
卷期号:7: 52-52 被引量:71
标识
DOI:10.3389/fbioe.2019.00052
摘要

This study applied a deep-learning cell identification algorithm to diagnostic images from the colon cancer repository at The Cancer Genome Atlas (TCGA). Within-image sampling improved performance without loss of accuracy. The features thus derived were associated with various clinical variables including metastasis, residual tumor, venous invasion, and lymphatic invasion. The deep-learning algorithm was trained using images from a locally available data set, then applied to the TCGA images by tiling them, and identifying cells in each patch defined by the tiling. In this application the average number of patches containing tissue in an image was ~900. Processing a random sample of patches greatly reduced computation costs. The cell identification algorithm was applied directly to each sampled patch, resulting in a list of cells. Each cell was labeled with its location and classification ("epithelial," "inflammatory," "fibroblast," or "other"). The number of cells of a given type in the patch was calculated, resulting in a patch profile containing four features. A morphological profile that applied to the entire image was obtained by averaging profiles over all patches. Two sampling policies were examined. The first policy was random sampling which samples patches with uniform weighting. The second policy was systematic random sampling which takes spatial dependencies into account. Compared with the processing of complete whole slide images there was a seven-fold improvement in performance when systematic random spatial sampling was used to select 100 tiles from the whole-slide image for processing, with very little loss of accuracy (~4% on average). We found links between the predicted features and clinical variables in the TCGA colon cancer data set. Several significant associations were found: increased fibroblast numbers were associated with the presence of metastasis, venous invasion, lymphatic invasion and residual tumor while decreased numbers of inflammatory cells were associated with mucinous carcinomas. Regarding the four different types of cell, deep learning has generated morphological features that are indicators of cell density. The features are related to cellularity, the numbers, degree, or quality of cells present in a tumor. Cellularity has been reported to be related to patient survival and other diagnostic and prognostic indicators, indicating that the features calculated here may be of general usefulness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助冷酷成威采纳,获得10
刚刚
风中的凛完成签到,获得积分10
1秒前
jiangqingquan完成签到,获得积分10
1秒前
完美迎梦发布了新的文献求助10
1秒前
无名完成签到,获得积分10
1秒前
zzy完成签到,获得积分10
1秒前
精明的亦竹完成签到,获得积分10
2秒前
2秒前
lin完成签到,获得积分20
3秒前
路飞发布了新的文献求助10
4秒前
4秒前
5秒前
田...发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
7秒前
852应助銪志青年采纳,获得10
7秒前
爱笑果汁完成签到 ,获得积分10
7秒前
8秒前
科研通AI6.1应助完美迎梦采纳,获得10
8秒前
8秒前
9秒前
迅速的海秋完成签到,获得积分10
9秒前
hiswen发布了新的文献求助10
9秒前
DG发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
9秒前
nczpf2010发布了新的文献求助10
9秒前
甄高丽发布了新的文献求助10
9秒前
剑来发布了新的文献求助10
10秒前
10秒前
zachary完成签到,获得积分10
11秒前
cwanglh完成签到 ,获得积分10
11秒前
11秒前
11秒前
by梦发布了新的文献求助10
11秒前
优美紫槐应助阿妤采纳,获得10
11秒前
背后的飞阳完成签到 ,获得积分10
12秒前
123b完成签到,获得积分10
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751341
求助须知:如何正确求助?哪些是违规求助? 5467831
关于积分的说明 15369436
捐赠科研通 4890425
什么是DOI,文献DOI怎么找? 2629719
邀请新用户注册赠送积分活动 1577966
关于科研通互助平台的介绍 1534134