谷胱甘肽
KEAP1型
氧化应激
化学
丁硫胺
胱硫醚β合酶
活性氧
生物化学
GCLC公司
氧化磷酸化
抗氧化剂
酶
分子生物学
半胱氨酸
生物
转录因子
基因
作者
Restituto Tocmo,Kirk L. Parkin
标识
DOI:10.1016/j.freeradbiomed.2019.07.022
摘要
The onion-derived metabolite, S-1-propenylmercaptocysteine (CySSPe), protects against oxidative stress and exhibits anti-inflammatory effects by modulating cellular redox homeostasis. We sought to establish whether CySSPe activates nuclear factor erythroid 2–related factor 2 (Nrf2) and whether activation of Nrf2 by CySSPe involves modification of the Kelch-like ECH-associated protein-1 (Keap1) to manifest these effects. We found that CySSPe stabilized Nrf2 protein and facilitated nuclear translocation to induce expression of antioxidant enzymes, including NQO1, HO-1, and GCL. Moreover, CySSPe attenuated tert-butyl hydroperoxide-induced cytotoxicity and dose-dependently inhibited reactive oxygen species production. Silencing experiments using Nrf2-siRNA confirmed that CySSPe conferred protection against oxidative stress by activating Nrf2. CySSPe enhanced cellular pool of reduced glutathione (GSH) and improved GSH:GSSG ratio. Pretreatment of cells with l-buthionine-S,R-sulfoximine (BSO) confirmed that CySSPe increases de novo synthesis of GSH by upregulating expression of the GSH-synthesizing enzyme GCL. Treatment of cells with CySSPe elevated hydrogen sulfide (H2S) production. Inhibition of H2S-synthesizing enzymes, cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS), by pretreating cells with propargylglycine (PAG) and oxyaminoacetic acid (AOAA) revealed that H2S production was partially dependent on a CSE/CBS-catalyzed β-elimination reaction with CySSPe that likely produced 1-propenyl persulfide (RSSH). Depleting cells of their GSH pool by exposure to BSO and diethylmaleate attenuated H2S production, suggesting a GSH-dependent formation of H2S, likely via the reduction of RSSH by GSH. Finally, treatment of cells with CySSPe persulfidated Keap1, which may be the mechanism involved for the stabilization of Nrf2 by CySSPe. Taken together, our results showed that attenuation of oxidative stress by CySSPe is associated with its ability to produce H2S or RSSH, which persulfidates Keap1 and activates Nrf2 signaling. This study provides insights on the potential of CySSPe as an onion-derived dietary agent that modulates redox homeostasis and combats oxidative stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI