Tris(dithiolene) Chemistry: A Golden Jubilee

特里斯 化学 计算化学 生物化学
作者
Stephen Sproules
出处
期刊:Progress in Inorganic Chemistry 卷期号:: 1-144 被引量:20
标识
DOI:10.1002/9781118792797.ch01
摘要

Chapter 1 Tris(dithiolene) Chemistry: A Golden Jubilee Stephen Sproules, Stephen Sproules West CHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United KingdomSearch for more papers by this author Stephen Sproules, Stephen Sproules West CHEM, School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United KingdomSearch for more papers by this author Book Editor(s):Kenneth D. Karlin, Kenneth D. Karlin Department of Chemistry Johns Hopkins University Baltimore, MarylandSearch for more papers by this author First published: 04 April 2014 https://doi.org/10.1002/9781118792797.ch01Citations: 42Book Series:Progress in Inorganic Chemistry AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Summary This chapter focuses on the history and evolution of tris(dithiolene) chemistry. Attaching the dithiolene ligands to metal ions is rather trivial in comparison to the synthesis of the ligands themselves. The vast majority of tris(dithiolene) complexes are prepared from combining the correct stoichiometric ratio of free dithiol or dialkali dithiolate with an appropriate metal reagent, principally metal chlorides. Alternative methods include transmetalation and alkyne reduction by a metal sulfide. The chapter discusses the electrochemistry, magnetometry and spectroscopy of tris(dithiolene). A vast array of spectroscopic instrumentation have been employed to test, poke, and prod tris(dithiolenes) over the decades in order to unlock the intricacies of their molecular and electronic structure. The techniques range from vibrational and electronic absorption, to magnetic resonance and element specific probes (e.g., XAS and Mössbauer spectroscopy). References R. B. King, Inorg. Chem., 2, 641 (1963). 10.1021/ic50007a056 CASWeb of Science®Google Scholar H. B. Gray, R. Williams, I. Bernal, and E. Billig, J. Am. Chem. Soc., 84, 3596 (1962). 10.1021/ja00877a045 CASWeb of Science®Google Scholar G. N. Schrauzer and V. Mayweg, J. Am. Chem. Soc., 84, 3221 (1962). 10.1021/ja00875a061 CASWeb of Science®Google Scholar A. Davison, N. Edelstein, R. H. Holm, and A. H. Maki, Inorg. Chem., 2, 1227 (1963). 10.1021/ic50010a031 CASWeb of Science®Google Scholar R. Eisenberg, J. A. Ibers, R. J. H. Clark, and H. B. Gray, J. Am. Chem. Soc., 86, 113 (1964). 10.1021/ja01055a026 CASWeb of Science®Google Scholar H. B. Gray and E. Billig, J. Am. Chem. Soc., 85, 2019 (1963). 10.1021/ja00896a028 CASWeb of Science®Google Scholar E. I. Stiefel, J. H. Waters, E. Billig, and H. B. Gray, J. Am. Chem. Soc., 87, 3016 (1965). 10.1021/ja01091a047 CASWeb of Science®Google Scholar G. N. Schrauzer, H. W. Finck, and V. P. Mayweg, Angew. Chem. Int. Ed. Engl., 3, 639 (1964). 10.1002/anie.196406393 Web of Science®Google Scholar G. N. Schrauzer, V. P. Mayweg, H. W. Finck, U. Müller-Westerhoff, and W. Heinrich, Angew. Chem. Int. Ed. Engl., 3, 381 (1964). 10.1002/anie.196403811 Web of Science®Google Scholar A. Davison, N. Edelstein, R. H. Holm, and A. H. Maki, J. Am. Chem. Soc., 86, 2799 (1964). 10.1021/ja01068a010 CASWeb of Science®Google Scholar J. Locke, J. A. McCleverty, E. J. Wharton, and C. J. Winscom, Chem. Commun., 677 (1966). CASWeb of Science®Google Scholar J. A. McCleverty, N. M. Atherton, J. Locke, E. J. Wharton, and C. J. Winscom, J. Am. Chem. Soc., 89, 6082 (1967). 10.1021/ja01000a016 CASWeb of Science®Google Scholar J. A. McCleverty, Prog. Inorg. Chem., 10, 49 (1968). 10.1002/9780470166116.ch2 CASGoogle Scholar A. L. Balch, I. G. Dance, and R. H. Holm, J. Am. Chem. Soc., 90, 1139 (1968). 10.1021/ja01007a009 CASWeb of Science®Google Scholar C. Faulmann and P. Cassoux, Prog. Inorg. Chem., 52, 399 (2004). 10.1002/0471471933.ch8 Web of Science®Google Scholar R. Hille, Chem. Rev., 96, 2757 (1996). 10.1021/cr950061t CASPubMedWeb of Science®Google Scholar M. K. Johnson, D. C. Rees, and M. W. W. Adams, Chem. Rev., 96, 2817 (1996). 10.1021/cr950063d CASPubMedWeb of Science®Google Scholar M. K. Chan, S. Mukund, A. Kletzin, M. W. W. Adams, and D. C. Rees, Science, 267, 1463 (1995). 10.1126/science.7878465 CASPubMedWeb of Science®Google Scholar J. McMaster, J. M. Tunney, and C. D. Garner, Prog. Inorg. Chem., 52, 539 (2004). 10.1002/0471471933.ch10 Web of Science®Google Scholar G. C. Tucci, J. P. Donahue, and R. H. Holm, Inorg. Chem., 37, 1602 (1998). 10.1021/ic971426q CASWeb of Science®Google Scholar C. Lorber, J. P. Donahue, C. A. Goddard, E. Nordlander, and R. H. Holm, J. Am. Chem. Soc., 120, 8102 (1998). 10.1021/ja981015o CASWeb of Science®Google Scholar C. A. Goddard and R. H. Holm, Inorg. Chem., 38, 5389 (1999). 10.1021/ic9903329 CASWeb of Science®Google Scholar B. S. Lim, J. Donahue, and R. H. Holm, Inorg. Chem., 39, 263 (2000). 10.1021/ic9908672 CASPubMedWeb of Science®Google Scholar R. Eisenberg, Coord. Chem. Rev., 255, 825 (2011). 10.1016/j.ccr.2010.09.003 CASWeb of Science®Google Scholar R. Eisenberg and H. B. Gray, Inorg. Chem., 50, 9741 (2011). 10.1021/ic2011748 CASPubMedWeb of Science®Google Scholar S. Sproules and K. Wieghardt, Coord. Chem. Rev., 255, 837 (2011). 10.1016/j.ccr.2010.12.006 CASWeb of Science®Google Scholar E. Hoyer, W. Dietzsch, H. Hennig, and W. Schroth, Chem. Ber., 102, 603 (1969). 10.1002/cber.19691020227 CASWeb of Science®Google Scholar E. Hoyer, W. Dietzsch, and H. Müller, Z. Chem., 7, 354 (1967). 10.1002/zfch.19670070921 CASWeb of Science®Google Scholar W. Schroth and J. Peschel, Chimia, 18, 171 (1964). CASWeb of Science®Google Scholar M. J. Baker-Hawkes, E. Billig, and H. B. Gray, J. Am. Chem. Soc., 88, 4870 (1966). 10.1021/ja00973a021 CASWeb of Science®Google Scholar R. Adams and A. Ferretti, J. Am. Chem. Soc., 81, 4927 (1959). 10.1021/ja01527a042 CASWeb of Science®Google Scholar R. Adams, W. Reifschneider, and A. Ferretti, Org. Synth., 42, 22 (1965). Google Scholar A. Ferretti, Org. Synth., 42, 54 (1965). Google Scholar L. Testaferri, M. Tiecco, M. Tingoli, D. Chianelli, and M. Montanucci, Synthesis, 751 (1983). 10.1055/s-1983-30501 CASWeb of Science®Google Scholar R. Sato, T. Ohyama, T. Kawagoe, M. Baba, S. Nakajo, T. Kimura, and S. Ogawa, Heterocycles, 55, 145 (2001). 10.3987/COM-00-9073 CASWeb of Science®Google Scholar G. D. Figuly, C. K. Loop, and J. C. Martin, J. Am. Chem. Soc., 111, 654 (1989). 10.1021/ja00184a038 CASWeb of Science®Google Scholar D. M. Giolando and K. Kirschbaum, Synthesis, 451 (1992). 10.1055/s-1992-26132 CASWeb of Science®Google Scholar N. D. Lowe and C. D. Garner, J. Chem. Soc., Dalton Trans., 2197 (1993). 10.1039/dt9930002197 CASWeb of Science®Google Scholar A. Callaghan, A. J. Layton, and R. S. Nyholm, Chem. Commun., 399 (1969). 10.1039/c2969000399b CASGoogle Scholar W. Schroth and U. Schmidt, Z. Chem., 4, 270 (1964). 10.1002/zfch.19640040705 CASGoogle Scholar J. S. Pap, F. L. Benedito, E. Bothe, E. Bill, S. DeBeer George, T. Weyhermüller, and K. Wieghardt, Inorg. Chem., 46, 4187 (2007). 10.1021/ic070130+ CASPubMedWeb of Science®Google Scholar T. Kreickmann and F. E. Hahn, Chem. Commun., 1111 (2007). 10.1039/B612726F CASPubMedWeb of Science®Google Scholar J. A. McCleverty and E. J. Wharton, J. Chem. Soc. A, 2258 (1969). Web of Science®Google Scholar D. Sellmann, G. Freyberger, R. Eberlein, E. Böhlen, G. Huttner, and L. Zsolnai, J. Organomet. Chem., 323, 21 (1987). 10.1016/0022-328X(87)87125-5 CASWeb of Science®Google Scholar A. M. Richter, V. Engels, N. Beye, and E. Fanghänel, Z. Chem., 29, 444 (1989). 10.1002/zfch.19890291206 CASWeb of Science®Google Scholar A. M. Richter, N. Beye, and E. Fanghänel, Synthesis, 1149 (1990). 10.1055/s-1990-27120 CASWeb of Science®Google Scholar D. C. Morrison and A. Furst, J. Org. Chem., 21, 470 (1956). 10.1021/jo01110a026 CASWeb of Science®Google Scholar C. G. Krespan, J. Am. Chem. Soc., 83, 3434 (1961). 10.1021/ja01477a020 CASWeb of Science®Google Scholar J. L. Hencher, Q. Shen, and D. G. Tuck, J. Am. Chem. Soc., 98, 899 (1976). 10.1021/ja00420a006 CASWeb of Science®Google Scholar K. Wang, J. M. McConnachie, and E. I. Stiefel, Inorg. Chem., 38, 4334 (1999). 10.1021/ic990204k CASWeb of Science®Google Scholar N. Jacobsen, P. de Mayo, and A. C. Weedon, Nouv. J. Chim., 2, 331 (1978). CASWeb of Science®Google Scholar P. C. Guha and M. N. Chakladar, Quart. J. Indian Chem. Soc., 2, 318 (1925). CASGoogle Scholar L. Field, W. D. Stephens, and E. L. Lippert, J. Org. Chem., 26, 4782 (1961). 10.1021/jo01069a610 Web of Science®Google Scholar C. M. Bolinger and T. B. Rauchfuss, Inorg. Chem., 21, 3947 (1982). 10.1021/ic00141a018 CASWeb of Science®Google Scholar T. Shimizu, H. Murakami, Y. Kobayashi, K. Iwata, and N. Kamigata, J. Org. Chem., 63, 8192 (1998). 10.1021/jo9806714 CASWeb of Science®Google Scholar W. Kusters and P. de Mayo, J. Am. Chem. Soc., 96, 3502 (1974). 10.1021/ja00818a025 CASWeb of Science®Google Scholar E. Fanghänel, R. Ebisch, and B. Adler, Z. Chem., 13, 431 (1973). 10.1002/zfch.19730131114 Web of Science®Google Scholar G. N. Schrauzer and V. Mayweg, Z. Naturforsch., 19b, 192 (1964). CASGoogle Scholar D. Coucouvanis, A. Hadjikyriacou, A. Toupadakis, S. M. Koo, O. Ileperuma, M. Draganjac, and A. Salifoglou, Inorg. Chem., 30, 754 (1991). 10.1021/ic00004a028 CASWeb of Science®Google Scholar M. Draganjac and D. Coucouvanis, J. Am. Chem. Soc., 105, 139 (1983). 10.1021/ja00339a037 CASWeb of Science®Google Scholar A. Mallard, C. Simonnet-Jégat, H. Lavanant, J. Marrot, and F. Sécheresse, Trans. Met. Chem., 33, 143 (2008). 10.1007/s11243-007-9005-3 CASWeb of Science®Google Scholar K. Umakoshi, E. Nishimoto, M. Sokolov, H. Kawano, Y. Sasaki, and M. Onishi, J. Organomet. Chem., 611, 370 (2000). 10.1016/S0022-328X(00)00409-5 CASWeb of Science®Google Scholar M. A. Ansari, J. Chandrasekaran, and S. Sarkar, Inorg. Chim. Acta, 130, 155 (1987). 10.1016/S0020-1693(00)90428-6 CASWeb of Science®Google Scholar C. L. Soricelli, V. A. Szalai, and S. J. N. Burgmayer, J. Am. Chem. Soc., 113, 9877 (1991). 10.1021/ja00026a038 CASWeb of Science®Google Scholar A. Davison and R. H. Holm, Inorg. Synth., 10, 8 (1967). 10.1002/9780470132418.ch3 CASGoogle Scholar J. Berger and I. Uldall, Acta Chem. Scand., 18, 1353 (1964). 10.3891/acta.chem.scand.18-1353 CASWeb of Science®Google Scholar A. K. Bhattacharya and A. G. Hortmann, J. Org. Chem., 39, 95 (1974). 10.1021/jo00915a021 CASWeb of Science®Google Scholar P. Falaras, C.-A. Mitsopoulou, D. Argyropoulos, E. Lyris, N. Psaroudakis, E. Vrachnou, and D. Katakis, Inorg. Chem., 34, 4536 (1995). 10.1021/ic00122a008 CASWeb of Science®Google Scholar A. M. Celli, D. Donati, F. Ponticelli, S. J. Roberts-Fleming, M. Kalaji, and P. J. Murphy, Org. Lett., 3, 3572 (2001). 10.1021/ol016687p CASWeb of Science®Google Scholar C. Mitsopoulou, J. Konstantatos, D. Katakis, and E. Vrachnou, J. Mol. Cat., 67, 137 (1991). 10.1016/0304-5102(91)85041-Y CASWeb of Science®Google Scholar P. Chandrasekaran and J. P. Donahue, Org. Synth., 86, 333 (2009). 10.15227/orgsyn.086.0333 CASGoogle Scholar P. Chandrasekaran, K. Arumugam, U. Jayarathne, L. M. Pérez, J. T. Mague, and J. P. Donahue, Inorg. Chem., 48, 2103 (2009). 10.1021/ic802016b CASPubMedWeb of Science®Google Scholar N. Robertson and L. Cronin, Coord. Chem. Rev., 227, 93 (2002). 10.1016/S0010-8545(01)00457-X CASWeb of Science®Google Scholar M. L. Mercuri, P. Deplano, L. Pilia, and F. Artizzu, Coord. Chem. Rev., 254, 1419 (2010). 10.1016/j.ccr.2009.10.002 CASWeb of Science®Google Scholar J. M. Williams, J. R. Ferraro, R. J. Thorn, K. D. Carlson, U. Geiser, H. H. Wang, A. M. Kini, and M. H. Whangbo, Organic Superconductors (Including Fullerene), Prentice Hall, Englewood, NJ, 1992. Google Scholar M. Bendikov, F. Wudl, and D. F. Perepichka, Chem. Rev., 104, 4891 (2004). 10.1021/cr030666m CASPubMedWeb of Science®Google Scholar P. Cassoux, L. Valada, H. Kobayashi, A. Kobayashi, R. A. Clark, and A. E. Underhill, Coord. Chem. Rev., 110 (1991). 10.1016/0010-8545(91)80024-8 Web of Science®Google Scholar A. E. Pullen and R.-M. Olk, Coord. Chem. Rev., 188, 211 (1999). 10.1016/S0010-8545(99)00031-4 CASWeb of Science®Google Scholar G. Steimecke, H.-J. Sieler, R. Kirmse, and E. Hoyer, Phosphorus Sulfur, 7, 49 (1979). 10.1080/03086647808069922 CASWeb of Science®Google Scholar T. K. Hansen, J. Becher, T. Jørgensen, K. S. Varma, R. Khedekar, and M. P. Cava, Org. Synth., 73, 270 (1996). 10.15227/orgsyn.073.0270 CASWeb of Science®Google Scholar L. Valada, J.-P. Legros, M. Bousseau, P. Cassoux, M. Garbauskas, and L. V. Interrante, J. Chem. Soc., Dalton Trans., 783 (1985). 10.1039/dt9850000783 Web of Science®Google Scholar J. G. Breitzer and T. B. Rauchfuss, Polyhedron, 19, 1283 (2000). 10.1016/S0277-5387(00)00381-8 CASWeb of Science®Google Scholar J. G. Breitzer, A. I. Smirnov, L. F. Szczepura, S. R. Wilson, and T. B. Rauchfuss, Inorg. Chem., 40, 1421 (2001). 10.1021/ic000999r CASPubMedWeb of Science®Google Scholar K. Hartke, T. Kissel, J. Quante, and R. Matusch, Chem. Ber., 113, 1898 (1980). 10.1002/cber.19801130525 CASWeb of Science®Google Scholar R.-M. Olk, W. Dietzsch, R. Kirmse, J. Stach, E. Hoyer, and L. Golič, Inorg. Chim. Acta, 128, 251 (1987). 10.1016/S0020-1693(00)86553-6 CASWeb of Science®Google Scholar G. Steimecke, J. Sieler, R. Kirmse, W. Dietzsch, and E. Hoyer, Phosphorus Sulfur, 12, 237 (1982). 10.1080/03086648208077452 CASWeb of Science®Google Scholar R.-M. Olk, B. Olk, W. Dietzsch, R. Kirmse, and E. Hoyer, Coord. Chem. Rev., 117, 99 (1992). 10.1016/0010-8545(92)80021-I CASWeb of Science®Google Scholar C. T. Vance, R. D. Bereman, J. Bordner, W. E. Hatfield, and J. H. Helms, Inorg. Chem., 24, 2905 (1985). 10.1021/ic00213a007 CASWeb of Science®Google Scholar G. Chung, R. Bereman, and P. Singh, J. Coord. Chem., 33, 331 (1994). 10.1080/00958979408024293 CASWeb of Science®Google Scholar J. Becher, J. Lau, P. Leriche, P. Mørk, and N. Svenstrup, J. Chem. Soc., Chem. Commun., 2715 (1994). 10.1039/C39940002715 CASWeb of Science®Google Scholar T. Yoneda, Y. Kamata, K. Ueda, T. Sugimoto, T. Tada, M. Shiro, H. Yoshino, and K. Murata, Synth. Met., 135–136, 573 (2003). 10.1016/S0379-6779(02)00748-8 CASWeb of Science®Google Scholar G. N. Schrauzer and H. W. Finck, Angew. Chem. Int. Ed. Engl., 3, 133 (1964). 10.1002/anie.196401332 Web of Science®Google Scholar G. N. Schrauzer, H. W. Finck, and V. Mayweg, Z. Naturforsch., 19b, 1080 (1964). CASGoogle Scholar G. N. Schrauzer, V. P. Mayweg, and W. Heinrich, Inorg. Chem., 4, 1615 (1965). 10.1021/ic50033a018 CASWeb of Science®Google Scholar K. Arumugam, J. E. Bollinger, M. Fink, and J. P. Donahue, Inorg. Chem., 46, 3283 (2007). 10.1021/ic0700203 CASPubMedWeb of Science®Google Scholar G. N. Schrauzer and V. P. Mayweg, J. Am. Chem. Soc., 88, 3235 (1966). 10.1021/ja00966a013 CASWeb of Science®Google Scholar K. Tatsumi, I. Matsubara, Y. Sekiguchi, A. Nakamura, and C. Mealli, Inorg. Chem., 28, 773 (1989). 10.1021/ic00303a032 CASWeb of Science®Google Scholar S. Friedle, D. V. Partyka, M. V. Bennett, and R. H. Holm, Inorg. Chim. Acta, 359, 1427 (2006). 10.1016/j.ica.2005.09.067 CASWeb of Science®Google Scholar D. V. Partyka and R. H. Holm, Inorg. Chem., 43, 8609 (2004). 10.1021/ic040097g CASPubMedWeb of Science®Google Scholar S. Grosyman, J.-J. Wang, R. Tagore, S. C. Lee, and R. H. Holm, J. Am. Chem. Soc., 130, 12794 (2008). 10.1021/ja804000k CASPubMedWeb of Science®Google Scholar Y. Gareau and A. Orellana, Syn. Lett., 803 (1997). CASWeb of Science®Google Scholar R. F. X. Williams, Phosphorus Sulfur, 2, 141 (1976). 10.1080/03086647608078939 CASWeb of Science®Google Scholar W. B. Heuer and W. H. Pearson, Polyhedron, 15, 2199 (1996). 10.1016/0277-5387(95)00499-8 CASWeb of Science®Google Scholar D. Coucouvanis, F. J. Hollander, R. West, and D. Eggerding, J. Am. Chem. Soc., 96, 3006 (1974). 10.1021/ja00816a064 CASWeb of Science®Google Scholar M. Gay-Lussac, Ann. Chim. (Paris), 95, 136 (1815). Google Scholar J. Formanek, Berchte., 22, 2655 (1889). 10.1002/cber.188902202160 Google Scholar J. R. Barceló, Spec. Acta, 10, 245 (1958). 10.1016/0371-1951(58)80089-2 CASWeb of Science®Google Scholar R. N. Hurd and G. DeLaMater, Chem. Rev., 61, 45 (1961). 10.1021/cr60209a003 CASWeb of Science®Google Scholar M. R. Green, N. Jubran, B. E. Bursten, and D. H. Busch, Inorg. Chem., 26, 2326 (1987). 10.1021/ic00261a032 CASWeb of Science®Google Scholar R. N. Hurd, G. DeLaMater, G. C. McElheny, and L. V. Peiffer, J. Am. Chem. Soc., 82, 4454 (1960). 10.1021/ja01502a004 CASWeb of Science®Google Scholar S. P. Perlepes, M. Bellaihou, and H. O. Desseyn, Spec. Lett., 26, 751 (1993). 10.1080/00387019308011568 CASWeb of Science®Google Scholar M. Abboudi, A. Mosset, and J. Galy, Inorg. Chem., 24, 2091 (1984). 10.1021/ic00207a026 Web of Science®Google Scholar R. Veit, J. J. Girerd, O. Kahn, F. Robert, and Y. Jeannin, Inorg. Chem., 25, 4175 (1986). 10.1021/ic00243a024 CASWeb of Science®Google Scholar R. N. Hurd, G. DeLaMater, G. C. McElheny, R. J. Turner, and V. H. Wallingford, J. Org. Chem., 26, 3980 (1961). 10.1021/jo01068a080 CASWeb of Science®Google Scholar H. O. Desseyn, A. J. Aarts, E. Esmans, and M. A. Herman, Spec. Acta, 35A, 1203 (1979). 10.1016/0584-8539(79)80103-8 CASWeb of Science®Google Scholar D. M. Hart, P. S. Rolfs, and J. M. Kessinger, J. Inorg. Nucl. Chem., 32, 469 (1970). 10.1016/0022-1902(70)80255-X CASWeb of Science®Google Scholar A. C. Fabretti, G. C. Pellacani, and G. Peyronel, J. Inorg. Nucl. Chem., 36, 1751 (1974). 10.1016/0022-1902(74)80506-3 CASWeb of Science®Google Scholar G. Peyronel, G. C. Pellacani, A. Pignedoli, and G. Benetti, Inorg. Chim. Acta, 5, 263 (1971). 10.1016/S0020-1693(00)95926-7 CASGoogle Scholar R. Isaksson, T. Liljefors, and J. Sandström, J. Chem. Res. (S), 43 (1981). CASWeb of Science®Google Scholar D. J. A. De Ridder, Acta Crystallogr. Sect., C49, 1975 (1993). CASGoogle Scholar P. C. Servaas, D. J. Stufkens, A. Oskam, P. Vernooijs, E. J. Baerends, D. J. A. De Ridder, and C. H. Stam, Inorg. Chem., 28, 4104 (1989). 10.1021/ic00321a014 CASWeb of Science®Google Scholar U. T. Mueller-Westerhoff, B. Vance, and D. I. Yoon, Tetrahedron, 47, 909 (1991). 10.1016/S0040-4020(01)80932-7 CASWeb of Science®Google Scholar P. Deplano, L. Pilia, D. Espa, M. L. Mercuri, and A. Serpe, Coord. Chem. Rev., 254, 1434 (2010). 10.1016/j.ccr.2009.12.022 CASWeb of Science®Google Scholar L. Pilia, F. Artizzu, D. Espa, L. Marchió, M. L. Mercuri, A. Serpe, and P. Deplano, Dalton Trans., 39, 8139 (2010). 10.1039/c0dt00803f CASPubMedWeb of Science®Google Scholar J. L. Martin and J. Takats, Inorg. Chem., 14, 73 (1975). 10.1021/ic50143a015 CASWeb of Science®Google Scholar M. J. Bennett, M. Cowie, J. L. Martin, and J. Takats, J. Am. Chem. Soc., 95, 7504 (1973). 10.1021/ja00803a049 CASWeb of Science®Google Scholar R. L. Melen, M. McPartlin, and D. S. Wright, Dalton Trans., 40, 1649 (2011). 10.1039/c0dt01690j CASWeb of Science®Google Scholar J. Jones and J. Douek, J. Inorg. Nucl. Chem., 43, 406 (1981). 10.1016/0022-1902(81)90037-3 CASWeb of Science®Google Scholar B. Birkmann, A. W. Ehlers, R. Fröhlich, K. Lammertsma, and F. E. Hahn, Chem. Eur. J., 15, 4301 (2009). 10.1002/chem.200802560 CASPubMedWeb of Science®Google Scholar B. Birkmann, W. W. Seidel, T. Pape, A. W. Ehlers, K. Lammertsma, and F. E. Hahn, Dalton Trans. 7350 (2009). 10.1039/b911014n CASPubMedWeb of Science®Google Scholar F. E. Hahn, B. Birkmann, and T. Pape, Dalton Trans. 2100 (2008). 10.1039/b800666k CASPubMedWeb of Science®Google Scholar F. Hupka and F. E. Hahn, Chem. Commun., 46, 3744 (2010). 10.1039/b926939h CASPubMedWeb of Science®Google Scholar T. Kreickmann, C. Diedrich, T. Pape, H. V. Huynh, S. Grimme, and F. E. Hahn, J. Am. Chem. Soc., 128, 11808 (2006). 10.1021/ja063655u CASPubMedWeb of Science®Google Scholar J. K. Yandell and N. Sutin, Inorg. Chem., 11, 448 (1972). 10.1021/ic50109a003 CASWeb of Science®Google Scholar J. A. McCleverty, J. Locke, E. J. Wharton, and M. Gerloch, J. Chem. Soc. A, 816 (1968). 10.1039/j19680000816 CASWeb of Science®Google Scholar E. Billig, H. B. Gray, S. I. Shupack, J. H. Waters, and R. Williams, Proc. Chem. Soc., 110 (1964). CASWeb of Science®Google Scholar C. H. Langford, E. Billig, S. I. Shupack, and H. B. Gray, J. Am. Chem. Soc., 86, 2958 (1964). 10.1021/ja01068a055 CASWeb of Science®Google Scholar S. Sproules and K. Wieghardt, Coord. Chem. Rev., 254, 1358 (2010). 10.1016/j.ccr.2009.12.012 CASWeb of Science®Google Scholar D. C. Olson, V. P. Mayweg, and G. N. Schrauzer, J. Am. Chem. Soc., 88, 4876 (1966). 10.1021/ja00973a022 CASWeb of Science®Google Scholar E. J. Rosa and G. N. Schrauzer, J. Phys. Chem., 73, 3132 (1969). 10.1021/j100843a058 CASWeb of Science®Google Scholar D. Katakis, C. Mitsopoulou, and E. Vrachnou, J. Photochem. Photobiol. A: Chem., 81, 103 (1994). 10.1016/1010-6030(94)03777-9 CASWeb of Science®Google Scholar A. Davison, N. Edelstein, R. H. Holm, and A. H. Maki, Inorg. Chem., 4, 55 (1965). 10.1021/ic50023a012 CASWeb of Science®Google Scholar P. J. Baricelli and P. C. H. Mitchell, Inorg. Chim. Acta, 115, 163 (1986). 10.1016/S0020-1693(00)84408-4 CASWeb of Science®Google Scholar M. Kawashima, M. Koyama, and T. Fujinaga, J. Inorg. Nucl. Chem., 38, 801 (1976). 10.1016/0022-1902(76)80360-0 CASWeb of Science®Google Scholar F. E. Hahn and W. W. Seidel, Angew. Chem. Int. Ed., 34, 2700 (1995). 10.1002/anie.199527001 CASWeb of Science®Google Scholar S. Boyde, C. D. Garner, J. A. Joule, and D. J. Rowe, Chem. Commun., 800 (1987). 10.1039/c39870000800 CASWeb of Science®Google Scholar G. N. Schrauzer, V. P. Mayweg, and W. Heinrich, J. Am. Chem. Soc., 88, 5174 (1966). 10.1021/ja00974a026 CASWeb of Science®Google Scholar D. Argyopoulos, E. Lyris, C. A. Mitsopoulou, and D. Katakis, J. Chem. Soc., Dalton Trans., 615 (1997). 10.1039/a605287h Web of Science®Google Scholar D. J. Harrison, A. J. Lough, N. Nguyen, and U. Fekl, Angew. Chem. Int. Ed., 46, 7644 (2007). 10.1002/anie.200702036 CASPubMedWeb of Science®Google Scholar G. N. Schrauzer and H. N. Rabinowitz, J. Am. Chem. Soc., 91, 6522 (1969). 10.1021/ja01051a078 CASWeb of Science®Google Scholar A. Davison, N. Edelstein, R. H. Holm, and A. H. Maki, Inorg. Chem., 3, 814 (1964). 10.1021/ic50016a007 CASWeb of Science®Google Scholar A. L. Balch and R. H. Holm, Chem. Commun., 552 (1966). CASWeb of Science®Google Scholar G. N. Schrauzer, V. P. Mayweg, H. W. Finck, and W. Heinrich, J. Am. Chem. Soc., 88, 4604 (1966). 10.1021/ja00972a013 CASWeb of Science®Google Scholar J. H. Enemark and W. N. Lipscomb, Inorg. Chem., 4, 1729 (1965). 10.1021/ic50034a012 CASWeb of Science®Google Scholar X. Yang, G. K. W. Freeman, T. B. Rauchfuss, and S. R. Wilson, Inorg. Chem., 30, 3034 (1991). 10.1021/ic00015a018 CASWeb of Science®Google Scholar C. G. Pierpont and C. W. Lange, Prog. Inorg. Chem., 41, 331 (1994). 10.1002/9780470166420.ch5 CASWeb of Science®Google Scholar C. G. Pierpont, Coord. Chem. Rev., 219–221, 415 (2001). 10.1016/S0010-8545(01)00342-3 CASWeb of Science®Google Scholar C. Keller, D. Walther, J. Reinhold, and E. Hoyer, Z. Chem., 28, 410 (1988). 10.1002/zfch.19880281110 CASWeb of Science®Google Scholar C. Schulze Isfort, T. Pape, and F. E. Hahn, Eur. J. Inorg. Chem., 2607 (2005). 10.1002/ejic.200500086 CASWeb of Science®Google Scholar N. G. Connelly and W. E. Geiger, Chem. Rev., 96, 877 (1996). 10.1021/cr940053x CASPubMedWeb of Science®Google Scholar G.-E. Matsubayashi, M. Nakano, H. Tamura, and K. Natsuaki, Mol. Cryst. Liq. Sect. Cryst., 296, 245 (1997). 10.1080/10587259708032324 CASWeb of Science®Google Scholar T. B. Rauchfuss, Prog. Inorg. Chem., 52, 1 (2004). 10.1002/0471471933.ch1 Web of Science®Google Scholar G. Matsubayashi, T. Maikawa, and M. Nakano, J. Chem. Soc., Dalton Trans., 2995 (1993). 10.1039/dt9930002995 CASWeb of Science®Google Scholar C. Ma, Y. Han, and L. Dacheng, Polyhedron, 23, 1207 (2004). 10.1016/j.poly.2004.01.019 CASWeb of Science®Google Scholar G. M. Allan, R. A. Howie, J. M. S. Skakle, J. L. Wardell, and S. M. S. V. Wardell, J. Organomet. Chem., 627, 189 (2001). 10.1016/S0022-328X(01)00735-5 CASWeb of Science®Google Scholar G. N. Schrauzer and V. P. Mayweg, J. Am. Chem. Soc., 87, 1483 (1965). 10.1021/ja01085a014 CASWeb of Science®Google Scholar M. Nomura and M. Fourmigué, Inorg. Chem., 47, 1301 (2008). 10.1021/ic700778b CASPubMedWeb of Science®Google Scholar E. Cerrada, E. J. Fernandez, P. G. Jones, A. Laguna, M. Laguna, and R. Terroba, Organometallics, 14, 5537 (1995). 10.1021/om00012a021 CASWeb of Science®Google Scholar C. S. Velazquez, T. F. Baumann, M. M. Olmstead, H. Hope, A. G. M. Barrett, and B. M. Hoffman, J. Am. Chem. Soc., 115, 9997 (1993). 10.1021/ja00075a016 CASWeb of Science®Google Scholar C. L. Beswick, J. M. Schulman, and E. I. Stiefel, Prog. Inorg. Chem., 52, 55 (2004). 10.1002/0471471933.ch2 Web of Science®Google Scholar R. Eisenberg and J. A. Ibers, Inorg. Chem., 4, 605 (1965). 10.1021/ic50027a001 CASWeb of Science®Google Scholar R. Eisenberg and J. A. Ibers, J. Am. Chem. Soc., 87, 3776 (1965). 10.1021/ja01094a046 CASGoogle Scholar R. Eisenberg and J. A. Ibers, Inorg. Chem., 5, 411 (1966). 10.1021/ic50037a018 CASWeb of Science®Google Scholar R. G. Dickinson and L. Pauling, J. Am. Chem. Soc., 45, 1466 (1923). 10.1021/ja01659a020 CASWeb of Science®Google Scholar A. E. Smith, G. N. Schrauzer, V. P. Mayweg, and W. Heinrich, J. Am. Chem. Soc., 87, 5798 (1965). 10.1021/ja00952a054 CASWeb of Science®Google Scholar R. Eisenberg and W. W. Brennessel, Acta Crystallogr. Sect., C62, m464 (2006). CASGoogle Scholar R. Eisenberg, E. I. Stiefel, R. C. Rosenberg, and H. B. Gray, J. Am. Chem. Soc., 88, 2874 (1966). 10.1021/ja00964a061 CASWeb of Science®Google Scholar R. Eisenberg and H. B. Gray, Inorg. Chem., 6, 1844 (1967). 10.1021/ic50056a018 CASWeb of Science®Google Scholar S. Sproules, T. Weyhermüller, S. DeBeer, and K. Wieghardt, Inorg. Chem., 49, 5241 (2010). 10.1021/ic100344f CASPubMedWeb of Science®Google Scholar E. I. Stiefel and H. B. Gray, J. Am. Chem. Soc., 87, 4012 (1965). 10.1021/ja01095a061 CASWeb of Science®Google Scholar E. I. Stiefel, R. Eisenberg, R. C. Rosenberg, and H. B. Gray, J. Am. Chem. Soc., 88, 2956 (1966). 10.1021/ja00965a015 CASWeb of Science®Google Scholar R. D. Shannon, Acta Crystallogr. Sect., A32, 751 (1976). 10.1107/S0567739476001551 CASGoogle Scholar B. Cordero, V. Gómez, A. E. Platero-Prats, M. Revés, J. Echeverría, E. Cremades, F. Barragán, and S. Alvarez, Dalton Trans. 2832 (2008). 10.1039/b801115j CASPubMedWeb of Science®Google Scholar R. Eisenberg, Prog. Inorg. Chem., 12, 295 (1970). 10.1002/9780470166130.ch4 CASGoogle Scholar R. Williams, E. Billig, J. H. Waters
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学渣小林发布了新的文献求助10
1秒前
哈哈哈完成签到,获得积分20
2秒前
想人陪的新瑶完成签到 ,获得积分10
2秒前
3秒前
yxlsunny完成签到,获得积分10
3秒前
NN发布了新的文献求助10
3秒前
Tang完成签到,获得积分10
3秒前
4秒前
斯文败类应助笨笨西装采纳,获得10
4秒前
果冻x应助林弋采纳,获得10
5秒前
5秒前
fox2shj完成签到,获得积分10
5秒前
benben055应助徐凤年采纳,获得10
6秒前
舟渡发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
7秒前
一yue完成签到,获得积分10
7秒前
Meeegan完成签到,获得积分10
7秒前
8秒前
8秒前
chen完成签到,获得积分10
8秒前
8秒前
gfqdts66完成签到 ,获得积分10
8秒前
实验老六完成签到,获得积分10
9秒前
detail完成签到 ,获得积分10
9秒前
9秒前
紫火七完成签到,获得积分10
10秒前
10秒前
多金发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
烟花应助学渣小林采纳,获得10
13秒前
sword发布了新的文献求助10
14秒前
lullaby发布了新的文献求助10
14秒前
14秒前
15秒前
一二发布了新的文献求助10
16秒前
高分求助中
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
Yuwu Song, Biographical Dictionary of the People's Republic of China 800
Multifunctional Agriculture, A New Paradigm for European Agriculture and Rural Development 600
Division and square root. Digit-recurrence algorithms and implementations 500
Hemerologies of Assyrian and Babylonian Scholars 500
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2491019
求助须知:如何正确求助?哪些是违规求助? 2150109
关于积分的说明 5489525
捐赠科研通 1870942
什么是DOI,文献DOI怎么找? 930095
版权声明 563380
科研通“疑难数据库(出版商)”最低求助积分说明 497480