Network Pharmacology and Reverse Molecular Docking-Based Prediction of the Molecular Targets and Pathways for Avicularin Against Cancer

对接(动物) 小桶 交互网络 计算生物学 信号转导 生物 功能(生物学) 基因 细胞生物学 生物化学 基因表达 医学 转录组 护理部
作者
Chaohui Duan,Li Yang,Xiaorui Dong,Weibin Xu,Yongjun Ma
出处
期刊:Combinatorial Chemistry & High Throughput Screening [Bentham Science Publishers]
卷期号:22 (1): 4-12 被引量:11
标识
DOI:10.2174/1386207322666190206163409
摘要

Aim and Objective: Avicularin has been found to inhibit the proliferation of HepG-2 cells in vitro in the screening of our laboratory. We intended to explain the molecular mechanism of this effect. Therefore, the combined methods of reverse molecular docking and network pharmacology were used in order to illuminate the molecular mechanisms for Avicularin against cancer. Materials and Methods: Potential targets associated with anti-tumor effects of Avicularin were screened by reverse molecular docking, then a protein database was established through constructing the drugprotein network from literature mining data, and the protein-protein network was built through an in-depth exploration of the relationships between the proteins, and then the network topology analysis was performed. Additionally, gene function and signaling pathways were analyzed by Go bio-enrichment and KEGG Pathway. Results: The result showed that Avicularin was closely related to 16 targets associated with cancer, and it may significantly influence the pro-survival signals in MAPK signaling pathway that can activate and regulate a series of cellular activities and participate in the regulation of cell proliferation, differentiation, transformation and apoptosis. Conclusion: The network pharmacology strategy used herein provided a powerful means for the mechanisms of action for bioactive ingredients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuxiaonian完成签到,获得积分10
1秒前
852应助xym采纳,获得10
1秒前
2秒前
史萌完成签到,获得积分10
3秒前
4秒前
缥缈忻关注了科研通微信公众号
4秒前
6秒前
阿甘遇上西雅图完成签到,获得积分10
6秒前
8秒前
morena应助咻咻采纳,获得10
8秒前
范海辛完成签到,获得积分10
9秒前
10秒前
pengchen发布了新的文献求助10
10秒前
12秒前
量子星尘发布了新的文献求助10
14秒前
cheese完成签到,获得积分10
14秒前
15秒前
领导范儿应助任性迎南采纳,获得10
15秒前
16秒前
思维的星球完成签到,获得积分10
18秒前
科研通AI5应助WAHAHAoo采纳,获得10
19秒前
19秒前
fearlessji完成签到 ,获得积分10
21秒前
iyiyii发布了新的文献求助10
21秒前
智晨发布了新的文献求助10
22秒前
zttz完成签到 ,获得积分10
23秒前
23秒前
慈祥的草本科植物完成签到,获得积分10
24秒前
24秒前
24秒前
xym完成签到,获得积分20
26秒前
27秒前
xym发布了新的文献求助10
28秒前
守夜人发布了新的文献求助10
28秒前
29秒前
29秒前
阿芝发布了新的文献求助10
29秒前
Magali发布了新的文献求助10
29秒前
DDDD发布了新的文献求助20
30秒前
大丽丽发布了新的文献求助10
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
优秀运动员运动寿命的人文社会学因素研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4227426
求助须知:如何正确求助?哪些是违规求助? 3760902
关于积分的说明 11821793
捐赠科研通 3421760
什么是DOI,文献DOI怎么找? 1877920
邀请新用户注册赠送积分活动 931106
科研通“疑难数据库(出版商)”最低求助积分说明 839008