肝星状细胞
Wnt信号通路
小RNA
连环素
细胞生物学
癌症研究
化学
生物
信号转导
内分泌学
基因
生物化学
作者
Fujun Yu,Yong Guo,Bicheng Chen,Liang Shi,Peihong Dong,Mengtao Zhou,Jianjian Zheng
摘要
It is known that the activation of hepatic stellate cells (HSCs) is a pivotal step in the initiation and progression of liver fibrosis. Aberrant activated Wnt/β-catenin pathway is known to accelerate the development of liver fibrosis. microRNAs (miRNAs)-mediated Wnt/β-catenin pathway has been reported to be involved in HSC activation during liver fibrosis. However, whether long noncoding RNAs (lncRNAs) regulate Wnt/β-catenin pathway during HSC activation still remains unclear.Long intergenic noncoding RNA-p21 (lincRNA-p21) expression was detected in Salvianolic acid B (Sal B)-treated cells. Effects of lincRNA-p21 knockdown on HSC activation and Wnt/β-catenin pathway activity were analyzed in Sal B-treated cells. In lincRNA-p21-overexpressing cells, effects of miR-17-5p on HSC activation and Wnt/β-catenin pathway activity were examined.LincRNA-p21 expression was up-regulated in HSCs after Sal B treatment. In primary HSCs, lincRNA-p21 expression was down-regulated at Day 5 relative to Day 2. Sal B-inhibited HSC activation including the reduction of cell proliferation, α-smooth muscle actin (α-SMA) and type I collagen was inhibited by lincRNA-p21 knockdown. Sal B-induced Wnt/β-catenin pathway inactivation was blocked down by loss of lincRNA-p21. Notably, lincRNA-p21, confirmed as a target of miR-17-5p, suppresses miR-17-5p level. Lack of the miR-17-5p binding site in lincRNA-p21 prevents the suppression of miR-17-5p expression. In addition, the suppression of HSC activation and Wnt/β-catenin pathway induced by lincRNA-p21 overexpression was almost inhibited by miR-17-5p.We demonstrate that lincRNA-p21-inhibited Wnt/β-catenin pathway is involved in the effects of Sal B on HSC activation and lincRNA-p21 suppresses HSC activation, at least in part, via miR-17-5p-mediated-Wnt/β-catenin pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI