光敏剂
光动力疗法
纳米化学
单线态氧
垂直波分
光化学
共轭体系
胶体金
荧光
结合
纳米技术
化学
纳米颗粒
电离辐射
辐照
材料科学
光学
聚合物
物理
有机化学
作者
Sandhya Clement,Wenjie Chen,Ayad G. Anwer,Ewa M. Goldys
出处
期刊:Mikrochimica Acta
[Springer Science+Business Media]
日期:2017-03-22
卷期号:184 (6): 1765-1771
被引量:22
标识
DOI:10.1007/s00604-017-2145-z
摘要
Photodynamic therapy (PDT) uses photosensitizers, light and molecular oxygen to generate cytotoxic reactive oxygen species. Its effectiveness is limited to <1 cm due to the limited penetration depth of light. The present study compares the PDT effectivity of the photosensitizer verteporfin (VP) conjugated to gold nanoparticles (AuNPs) (a) by using deeply penetrating X-rays administered in standard radiotherapy doses, and (b) by using red light (690 nm). VP was conjugated to AuNPs of around 12 nm size to enhance the interaction of ionizing radiation with PS. For comparison, VP also was directly exposed to X-rays. It is found that VP alone is stimulated by X-rays to generate singlet oxygen. The conjugate to AuNPs also generated a significant amount of singlet oxygen on irradiation with X-rays in comparison to illumination with 690-nm light. It is also found that the rate of singlet oxygen generation is amplified in case of AuNP-conjugated VP compared to VP alone. The performance of the AuNP-VP conjugate and of the VP alone was tested in Panc 1 cells. Their viability was impaired much more in these two scenarios than with the X-ray radiation only. This suggests excellent perspectives for PDT based on VP and with X-ray stimulation, both as a stand-alone photosensitizer and in Au-NP conjugates. Moreover, both VP and AuNP-VP conjugates show bright fluorescence in physiological media for excitation/emission wavelengths in the range of 405/690 nm; hence they can also be used for simultaneous bioimaging.
科研通智能强力驱动
Strongly Powered by AbleSci AI