已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development and validation of a machine learning-based model for 90-day prognosis outcome in spontaneous intracerebral hemorrhage patients based on non-contrast computed tomography: a multicenter retrospective observational study

医学 人工智能 特征选择 逻辑回归 随机森林 机器学习 观察研究 特征(语言学) 梯度升压 回顾性队列研究 结果(博弈论) 支持向量机 脑出血 放射科 队列 接收机工作特性 优势比 数据集 特征工程 磁共振成像 Boosting(机器学习) 计算机断层摄影术 人工神经网络 队列研究 单中心 可能性
作者
Lichao Wei,Biwu Wu,Tao Guo,Dewen Ru,Chen Gao,Jiayun (Gavin) Wu,Aimei Wu,Hong Yue,Jin Hu,Ling Wei,Zhi Geng,Kai Wang
出处
期刊:EClinicalMedicine [Elsevier]
卷期号:88: 103507-103507
标识
DOI:10.1016/j.eclinm.2025.103507
摘要

Summary: Background: Spontaneous Intracerebral hemorrhage (sICH) is a disease with high mortality and disability. Non-contrast computed tomography (NCCT) is the most commonly used imaging method in the diagnosis and treatment of sICH. This study aimed to develop a clinically useful prediction model for the short-term prognosis of sICH patients based on NCCT features using a machine learning model. Methods: We retrospectively collected data from sICH patients from four centers in China between January 2021 and June 2024, used data from three centers as training cohort to build the model, and another single center data for external validation. The NCCT imaging features were combined with the basic clinical characteristics of sICH patients as training features for machine learning. We developed and verified the effectiveness of five models: support vector machine (SVM), logistic regression (LR), random forest (RF), eXtreme Gradient Boosting (XGboost) and Light Gradient Boosting Machine (LightGBM). The clinical feature set, NCCT imaging feature set and fusion feature set were modeled separately and externally validated. The performance of machine learning models with different features was comprehensively evaluated using ROC curves, accuracy and other related indicators. The SHapley Additive exPlanations (SHAP) diagram was used to illustrate the importance of variables in the model, and the Sequential Forward Selection (SFS) was used to screen out the core features. Finally, a convenient and practical prognosis prediction platform was built based on the core features. This study is registered with ClinicalTrials.gov (NCT06535438). Findings: A total of 1091 sICH patients from three centers were included as the training cohort, and 102 patients from a single center were included as the external validation cohort. The LightGBM model showed the best performance in predicting the short-term prognosis of sICH patients, with an area under the receiver operating characteristic curve (AUROC) of 0.813 ± 0.012. The clinical feature cohort model (AUC: 0.822, 95% CI (0.763–0.881)), the NCCT imaging feature model (AUC: 0.770, 95% CI (0.704–0.835)) and the fusion model (AUC: 0.852, 95% CI (0.797–0.906)) were developed respectively. The external validation cohort were the clinical feature model (AUC: 0.792, 95% CI (0.689–0.894)), the NCCT imaging feature model (AUC: 0.746, 95% CI (0.637–0.855)), and the fusion feature (AUC: 0.796, 95% CI (0.694–0.897). Finally, the core factors obtained through screening, including Glasgow Coma Scale (GCS) score at admission, intraventricular hemorrhage (IVH), National Institutes of Health Stroke Scale (NIHSS) score at admission, hematoma volume, mean CT value, and black hole sign were incorporated into the model to generate a publicly accessible online platform (https://surge-ustc.shinyapps.io/multi_para_sih_prognosis/). Interpretation: The prediction model based on NCCT features established by the LightGBM model has a reliable predictive effect on the short-term prognosis of sICH patients and is of great clinical convenience and practicality. Funding: Funding provided by National Natural Science Foundation of China (82427808, 82171382, U23A20424, 82090034 and 82371201), the Anhui Province Clinical Medical Research Transformation Special Project (202204295107020006 and 202204295107020028) and Research Fund of Anhui Institute of translational medicine (2022zhyx-B11).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
机灵千萍完成签到,获得积分10
1秒前
FJ发布了新的文献求助10
1秒前
LALA发布了新的文献求助10
3秒前
可爱的函函应助阿俊1212采纳,获得10
3秒前
季文婷发布了新的文献求助10
4秒前
zhangyk完成签到,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
赘婿应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
10秒前
jason应助科研通管家采纳,获得10
10秒前
zhoudada应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
完美世界应助无奈又晴采纳,获得10
10秒前
11秒前
小六子发布了新的文献求助10
11秒前
11秒前
13秒前
15秒前
伶俐向梦完成签到,获得积分10
16秒前
花开的石头完成签到,获得积分10
17秒前
周周发布了新的文献求助10
18秒前
18秒前
19秒前
20秒前
21秒前
22秒前
23秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5522001
求助须知:如何正确求助?哪些是违规求助? 4613204
关于积分的说明 14537757
捐赠科研通 4550874
什么是DOI,文献DOI怎么找? 2493912
邀请新用户注册赠送积分活动 1474951
关于科研通互助平台的介绍 1446330