Development and validation of a dynamic prediction model for infective endocarditis patients based on platelet trajectories latent classes: a longitudinal retrospective study from multicenter databases

医学 阿卡克信息准则 逻辑回归 回顾性队列研究 聚类分析 比例危险模型 贝叶斯概率 贝叶斯信息准则 统计 回归分析 感染性心内膜炎 回归 马尔科夫蒙特卡洛 接收机工作特性 数据挖掘 星团(航天器) 协变量 递归分区 纵向研究 弹道 后验概率 时间点 贝叶斯定理 重症监护医学 概率逻辑 马尔可夫模型 生存分析 内科学
作者
Kexiao Zheng,Yanglin Hao,Chao Guo,Weicong Ye,Zilong Luo,Xiaohan Li,Zifeng Zou,Ran Li,Yilong Li,Zetong Tao,Jiahong Xia,Xi Zhang,Jie Wu
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000003841
摘要

Background Platelets (PLTs) are a driving factor in infective endocarditis (IE) and, as the smallest cellular component in the blood, are sensitive to the effects of infection status, immune status, and the degree of frailty. IE, a disease resulting from the cumulative convergence of multisystem mechanisms involving infection, hemodynamics, immunity, and coagulation that locally target the cardiac endothelium, demonstrates marked heterogeneity in both pathogenic manifestations and clinical outcomes. Therefore, the aim of this study was to explore PLT trajectories during treatment and the clinical characteristics of IE patients of different trajectories. Methods We conducted a retrospective analysis of longitudinal data from multiple databases (eICU and MIMIC). Latent class growth mixture modeling (LCGMM) was implemented to identify PLT trajectories and perform cluster analysis. Model selection criteria [log-likelihood, Akaike information criterion (AIC), Bayesian information criterion (BIC), and entropy] and average posterior probabilities were calculated to determine the optimal number of trajectory classes. Cox proportional hazards and logistic regression analyses were conducted to evaluate associations between trajectory subgroups and clinical outcomes. Bayesian joint models were subsequently developed to construct dynamic prediction models, with model parameters estimated using Markov chain Monte Carlo (MCMC) algorithms. The predictive performance of the dynamic models was assessed through the area under the receiver operating characteristic (AUROC) curve at multi-timepoint. Results Through clustering analysis of IE cohorts on PLTs post-admission, we identified four latent classes, each exhibiting unique clinical profiles (entropy: 0.815). We established a dynamic predictive model which integrates infection status (blood culture and white blood cell) and PLTs updated with each test during ICU stay, and achieved robust predictive performance (AUC: 0.71, Youden: 0.96, F1-score: 0.95). Conclusion Integrating longitudinal PLTs trajectories with baseline characteristics enables effective risk stratification and adverse outcome prediction in patients with IE. Graphical abstract Illustrative schematic depicting the workflow and findings of this study (created with BioRender.com). First, we identify latent classes among IE patients based on a latent class growth mixed model. Subsequently, we incorporate the identified latent classes as predictors into the survival sub-model, constructing a Bayesian joint model by combining longitudinal nonlinear models and non-Gaussian joint models. IE: infective endocarditis, LCGMM: latent class growth mixed model, AUC: area under curve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
土豪的灵竹完成签到 ,获得积分10
2秒前
背后的雪卉应助elisa828采纳,获得10
5秒前
聪明的二休完成签到,获得积分20
9秒前
桐桐应助幻梦如歌采纳,获得30
17秒前
hui完成签到,获得积分20
22秒前
笨笨罡完成签到 ,获得积分10
36秒前
可夫司机完成签到 ,获得积分10
36秒前
elisa828完成签到,获得积分10
39秒前
xll完成签到,获得积分10
40秒前
xll发布了新的文献求助10
44秒前
czj完成签到 ,获得积分0
44秒前
cc完成签到 ,获得积分10
48秒前
夏姬宁静完成签到,获得积分10
59秒前
59秒前
叶远望完成签到 ,获得积分10
1分钟前
1分钟前
Mason完成签到 ,获得积分10
1分钟前
1分钟前
ajaja完成签到 ,获得积分10
1分钟前
JOKER完成签到 ,获得积分10
1分钟前
乐观的星月完成签到 ,获得积分10
1分钟前
zhangnan完成签到 ,获得积分10
1分钟前
马东完成签到 ,获得积分10
1分钟前
龙腾岁月完成签到 ,获得积分10
1分钟前
羊白玉完成签到 ,获得积分10
1分钟前
Dongjie完成签到,获得积分10
1分钟前
打打应助酷酷皮卡丘采纳,获得20
1分钟前
甜蜜耳机完成签到 ,获得积分10
1分钟前
Jzhaoc580完成签到 ,获得积分10
1分钟前
动人的诗霜完成签到 ,获得积分10
1分钟前
1分钟前
婉莹完成签到 ,获得积分0
1分钟前
Heart_of_Stone完成签到 ,获得积分10
1分钟前
辉辉完成签到 ,获得积分10
1分钟前
海英完成签到,获得积分10
2分钟前
WJane完成签到,获得积分10
2分钟前
航行天下完成签到 ,获得积分10
2分钟前
传奇3应助科研通管家采纳,获得10
2分钟前
gincle完成签到 ,获得积分10
2分钟前
徐梦曦完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590668
求助须知:如何正确求助?哪些是违规求助? 4676614
关于积分的说明 14795485
捐赠科研通 4634782
什么是DOI,文献DOI怎么找? 2532901
邀请新用户注册赠送积分活动 1501350
关于科研通互助平台的介绍 1468794