Abstract A086: Classification of territorial reperfusion pattern of the middle cerebral artery after mechanical thrombectomy: a latent class analysis

医学 溶栓 改良兰金量表 大脑中动脉 心脏病学 内科学 闭塞 再灌注治疗 颈内动脉 脑梗塞 冲程(发动机) 逻辑回归 血管造影 脑血管造影 梗塞 相伴的 再灌注损伤 脑动脉 缺血 放射科 额叶 优势比 外科 大脑前动脉 动脉
作者
Kohei Takikawa,Satoru Fujiwara,Hiroyuki Ishiyama,Naruhiko Kamogawa,Tomohide Yoshie,Ryoma Inui,Soichiro ABE,Tomotaka Tanaka,Soshiro Ogata,Hirotoshi Imamura,Hiroharu Kataoka,Masatoshi Koga,Kazunori Toyoda,Masafumi Ihara
出处
期刊:Stroke [Ovid Technologies (Wolters Kluwer)]
卷期号:57 (Suppl_1)
标识
DOI:10.1161/str.57.suppl_1.a086
摘要

Background: The Thrombolysis in Cerebral Infarction scale is the most widely used scale to evaluate reperfusion after mechanical thrombectomy (MT), defined according to the percentage of reperfusion in downstream arterial branches. A limitation of this volume-based score is that it does not account for the varying eloquences of different arterial territories. Understanding territorial reperfusion patterns may advance the knowledge of incomplete reperfusion and more granular outcome prediction after MT. We therefore aimed to classify the territorial reperfusion patterns of cortical branches of the middle cerebral artery (MCA) after MT and to evaluate their impact on clinical outcomes. Methods: This single-center observational study included patients who underwent MT for internal carotid artery (ICA) or MCA M1 occlusion between January 2014 and May 2025. Patients with concomitant anterior cerebral artery occlusion were excluded. Reperfusion status of the twelve MCA branches was evaluated on final angiography and subsequently subjected to latent class analysis (LCA) to identify distinct reperfusion patterns. The primary outcome was achievement of modified Rankin Scale 0–2 or returning to baseline at 90 days. Multivariable logistic regression was performed to compare outcomes across classes. Results: A total of 473 patients (median age 78 [IQR 70–85] years; 222 female [47%]) were analyzed. The LCA model identified five classes of reperfusion patterns (Figure 1); class 1: good reperfusion in all territory (n=326), class 2: poor reperfusion in the parietal and the occipital lobe (n=41), class 3: poor reperfusion in the frontal lobe (n=52), class 4: reperfusion limited to the temporal lobe (n=13), class 5: poor reperfusion in all territory (n=45). In multivariable analysis, the likelihood of achieving the primary outcome was significantly higher in class 1 (61.0%, adjusted odds ratio [aOR] 15.1, 95% confidence interval [CI] 5.9–46.4), class 2 (56.1%, aOR 9.9, 95% CI 3.2–35.5), class 3 (53.8%, aOR 9.9, 95% CI 3.3–33.9), but not in class 4 (30.8%, aOR 4.4 95% CI 0.8–22.0) compared with class 5 (14.6%) (Figure 2,3). Conclusion: LCA identified five territorial reperfusion patterns of MCA cortical branches after MT. These patterns may provide insights into the characterization of incomplete reperfusion, but further studies are needed for validation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
汉堡包应助关耳采纳,获得10
刚刚
吴裙裙完成签到,获得积分20
1秒前
量子星尘发布了新的文献求助10
1秒前
在水一方应助正直的沛凝采纳,获得10
1秒前
我爱毕设发布了新的文献求助10
1秒前
2秒前
haowenqian应助Jeri采纳,获得100
2秒前
乌拉拉完成签到,获得积分20
4秒前
5秒前
5秒前
gfjh完成签到,获得积分10
5秒前
豆包发布了新的文献求助10
6秒前
成就书南完成签到,获得积分10
6秒前
7秒前
9秒前
Charles完成签到,获得积分10
9秒前
关耳发布了新的文献求助10
10秒前
老吉完成签到,获得积分20
10秒前
11秒前
PZzzzK完成签到,获得积分10
13秒前
Owen应助贪吃的双下巴采纳,获得10
13秒前
SciGPT应助豆包采纳,获得10
13秒前
快乐滑板应助1101592875采纳,获得10
13秒前
CodeCraft应助疯狂大脑壳采纳,获得10
14秒前
CPU_YYT完成签到,获得积分10
14秒前
14秒前
涤尘发布了新的文献求助10
14秒前
15秒前
w王王完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
XHW发布了新的文献求助10
15秒前
秦善斓完成签到,获得积分10
15秒前
15秒前
奋进的熊完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
16秒前
17秒前
清风完成签到,获得积分10
18秒前
可爱的函函应助独特的秋采纳,获得10
18秒前
明明发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5770876
求助须知:如何正确求助?哪些是违规求助? 5588215
关于积分的说明 15425761
捐赠科研通 4904256
什么是DOI,文献DOI怎么找? 2638647
邀请新用户注册赠送积分活动 1586521
关于科研通互助平台的介绍 1541641