SVNT-DKB: A Data-Knowledge-Bayesian Integrated Safety Evaluation Framework for Autonomous Driving Systems

贝叶斯网络 计算机科学 样品(材料) 数据挖掘 预处理器 专家启发 数据预处理 风险分析(工程) 贝叶斯概率 专家系统 机器学习 可靠性工程 传感器融合 功能(生物学) 路径(计算) 工程类 风险评估 人工智能 样本量测定 模糊逻辑 系统安全 瓶颈 先验概率 数据建模 不确定性传播 数据集成 形势分析
作者
Chen Cheng,Bixin Li
出处
期刊:International Journal of Software Engineering and Knowledge Engineering [World Scientific]
标识
DOI:10.1142/s0218194025501098
摘要

The autonomous driving system (ADS) faces significant challenges in safety verification: due to the high cost and inherent risks of large-scale real-world environment testing, safety-critical data in the real world is still scarce. This makes traditional data-based methods ineffective. To address this gap, this paper proposes the novel safety evaluation framework SVNT-DKB, which integrates data-based learning, knowledge-guided modeling, and Bayesian probability reasoning structurally, resolving the contradiction between small sample limitations and cross-layer risk modeling. The core innovations of this framework include: (1) a four-dimensional hierarchical SVNT model (system-vehicle-network-traffic) based on system safety principles, capable of capturing causal risk propagation between the technical and environmental layers; (2) the DKB fusion strategy using Dempster-Shafer (DS) evidence theory, integrating multiple expert knowledge and reducing small sample bias; (3) an improved NewBIC scoring function with an adaptive scaling factor, capable of dynamically balancing expert knowledge and data reliability. Comprehensive experimental verification shows that SVNT-DKB has significant advantages in three aspects: (1) small sample robustness: with only 30 training samples, its overall accuracy reaches 86.7%, which is 33.4% higher than BPNN and 13.4% higher than SVM, and the accuracy in high-risk scenarios is 86.3%; (2) industrial feasibility: compared with ANSYS Medini Analyze, it reduces data preprocessing time by 66.7% (10±2 ms vs. 30±5 ms), increases system-level risk path coverage by 27% (92% vs. 65%), and keeps diagnostic delay at 95±3 ms, meeting the real-time requirements of ISO 26262; (3) scenario generalization: it maintains reliable performance in urban intersections, highways, and rainy conditions, and the risk distribution is consistent with the accident statistics in the real world. These findings confirm the excellent performance of SVNT-DKB in small sample robustness, interpretability, and real-time performance, effectively bridging the gap between limited data and the comprehensive safety guarantee requirements of ADSs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗艳一发布了新的文献求助10
1秒前
无极微光发布了新的文献求助20
2秒前
waitingfor完成签到,获得积分10
3秒前
Yaon-Xu完成签到,获得积分10
3秒前
零点起步完成签到,获得积分10
3秒前
3秒前
坚定自信完成签到 ,获得积分10
5秒前
所所应助YDX采纳,获得10
5秒前
宋烁发布了新的文献求助10
6秒前
嘿嘿发布了新的文献求助10
7秒前
小二郎应助傅宛白采纳,获得10
8秒前
D515发布了新的文献求助80
8秒前
Juyy发布了新的文献求助10
10秒前
12秒前
13秒前
Owen应助花恋采纳,获得10
13秒前
淡然语芙完成签到,获得积分10
15秒前
16秒前
YDX发布了新的文献求助10
16秒前
寒一完成签到,获得积分20
17秒前
17秒前
18秒前
天天快乐应助dfggg采纳,获得10
20秒前
20秒前
21秒前
殷一丹完成签到 ,获得积分10
21秒前
cola完成签到 ,获得积分10
22秒前
玉锅巴发布了新的文献求助10
22秒前
22秒前
大胆的初瑶完成签到,获得积分10
25秒前
Avery完成签到,获得积分10
25秒前
针真滴完成签到 ,获得积分10
26秒前
完美世界应助正直芫采纳,获得10
26秒前
微光应助ybbb采纳,获得10
27秒前
嘿嘿发布了新的文献求助30
27秒前
东方元语应助无极微光采纳,获得20
28秒前
29秒前
哈哈哈曲奇完成签到 ,获得积分10
34秒前
量子星尘发布了新的文献求助10
35秒前
zhuzhuzhu发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5541464
求助须知:如何正确求助?哪些是违规求助? 4627921
关于积分的说明 14605667
捐赠科研通 4568962
什么是DOI,文献DOI怎么找? 2504866
邀请新用户注册赠送积分活动 1482342
关于科研通互助平台的介绍 1453883