Multiproduct Inventory Systems with Upgrading: Replenishment, Allocation, and Online Learning

次梯度方法 后悔 数学优化 计算机科学 先验与后验 时间范围 在线算法 马尔可夫决策过程 动态规划 订单(交换) 库存控制 接头(建筑物) 随机规划 上下界 联合概率分布 线性规划 资源配置 概率分布 随机优化 运筹学 班级(哲学) 稳健优化 决策问题 尺寸 最优化问题 块(置换群论) 工作(物理)
作者
Jingwen Tang,Izak Duenyas,Cong Shi,Nan Yang
出处
期刊:Manufacturing & Service Operations Management [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/msom.2024.0974
摘要

Problem definition: We consider the joint optimization of ordering and upgrading decisions in a dynamic multiproduct system over a finite horizon of T periods. In each period, multiple types of demand arrive stochastically and can be satisfied either with supply of the same type or by upgrading to a higher-quality product. The goal is to find an optimal joint replenishment and allocation policy that maximizes total expected profit, both when the firm knows the demand distributions a priori and when the firm must learn them over time. Methodology/results: We first characterize the structure of the clairvoyant optimal joint ordering and allocation policy. Building on this structure, we propose a new online learning algorithm, termed stochastic subgradient descent with perturbed subgradient (SGD-PG for short), and show that it achieves cumulative regret growing on the order of the square root of T, which matches the known lower bound for any online learning method. We further show that SGD-PG can be extended to a nested censored demand setting. In the course of the algorithmic design, we propose a linear programming (LP)-based approach to compute the subgradient and prove that it produces the same output as the perturbed subgradient method. The LP-based method also allows us to extend the results to general upgrading structures. We demonstrate the efficacy of the proposed algorithms in numerical experiments. Managerial implications: This work provides practitioners with the optimal policy for inventory replenishment and allocation in a multiproduct system with upgrading. When the demand distribution is unknown, we propose an easy-to-implement and provably good algorithm for demand learning. In addition, our numerical results quantify the value of optimal upgrading and identify the conditions under which upgrading is most beneficial. Funding: This research was partially supported by an Amazon research award. Supplemental Material: The e-companion is available at https://doi.org/10.1287/msom.2024.0974 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hsh发布了新的文献求助10
2秒前
2秒前
Dean应助卡奴采纳,获得50
2秒前
2秒前
酷炫师发布了新的文献求助10
4秒前
4秒前
fionazhangdr完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
高高不二发布了新的文献求助10
6秒前
wuyu发布了新的文献求助10
6秒前
咎淇完成签到,获得积分10
8秒前
淡如水发布了新的文献求助10
8秒前
9秒前
9秒前
天天完成签到,获得积分0
10秒前
sunrase完成签到,获得积分10
10秒前
花无双完成签到,获得积分0
11秒前
muli发布了新的文献求助10
12秒前
丫丫完成签到 ,获得积分10
12秒前
13秒前
CodeCraft应助啦啦啦啦啦啦采纳,获得10
14秒前
秋的账号完成签到 ,获得积分10
19秒前
19秒前
敏感野狼完成签到,获得积分20
19秒前
RJ完成签到,获得积分10
19秒前
20秒前
21秒前
赘婿应助你已成风采纳,获得10
21秒前
科目三应助muli采纳,获得10
22秒前
希望天下0贩的0应助qvb采纳,获得10
22秒前
充电宝应助酷炫师采纳,获得10
24秒前
进击的PhD举报鹿lu求助涉嫌违规
25秒前
遇见渔火发布了新的文献求助30
25秒前
LHP发布了新的文献求助10
27秒前
Hello应助1234采纳,获得30
28秒前
30秒前
小二郎应助wuyu采纳,获得10
30秒前
jackten完成签到,获得积分10
30秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638869
求助须知:如何正确求助?哪些是违规求助? 4746433
关于积分的说明 15003984
捐赠科研通 4796811
什么是DOI,文献DOI怎么找? 2563021
邀请新用户注册赠送积分活动 1522222
关于科研通互助平台的介绍 1481993