颗粒过滤器
卡尔曼滤波器
组分(热力学)
估计员
蒙特卡罗方法
粒子(生态学)
非线性系统
贝叶斯概率
断层(地质)
计算机科学
算法
噪音(视频)
生物系统
高斯分布
可靠性工程
概率密度函数
估计
故障检测与隔离
统计
数据挖掘
数学
应用数学
统计物理学
工程类
物理
生物
系统工程
热力学
量子力学
生态学
作者
Enrico Zio,Giovanni Peloni
标识
DOI:10.1016/j.ress.2010.08.009
摘要
Bayesian estimation techniques are being applied with success in component fault diagnosis and prognosis. Within this framework, this paper proposes a methodology for the estimation of the remaining useful life of components based on particle filtering. The approach employs Monte Carlo simulation of a state dynamic model and a measurement model for estimating the posterior probability density function of the state of a degrading component at future times, in other words for predicting the time evolution of the growing fault or damage state. The approach avoids making the simplifying assumptions of linearity and Gaussian noise typical of Kalman filtering, and provides a robust framework for prognosis by accounting effectively for the uncertainties associated to the estimation. Novel tailored estimators are built for higher accuracy. The proposed approach is applied to a crack fault, with satisfactory results.
科研通智能强力驱动
Strongly Powered by AbleSci AI