已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

On Automating Hyperparameter Optimization for Deep Learning Applications

机器学习 人工智能 过度拟合 超参数 计算机科学 深度学习 辍学(神经网络) 领域知识 过程(计算) 人工神经网络 操作系统
作者
Nabila Shawki,R. Rodriguez Nunez,Iyad Obeid,J. Picone
标识
DOI:10.1109/spmb52430.2021.9672266
摘要

Given a large amount of data and appropriate hyperparameters, deep learning techniques can deliver impressive performance if several challenging issues with training, such as vanishing gradients, can be overcome. Often, deep learning training techniques produce suboptimal results because the parameter search space is large and populated with many less-than-ideal solutions. Automatic hyperparameter tuning algorithms, known as autotuners, offer an attractive alternative for automating the training process, though they can be computationally expensive. Additionally, autotuners democratize state-of-the-art machine learning approaches and increase the accessibility of deep learning technology to different scientific communities and novice users. In this paper, we investigate the efficacy of autotuning using Keras Tuner on both synthetic and real-world datasets. We show that autotuning performed well on synthetic datasets but was inadequate on real data. As we increase model complexity, autotuning produces errors that are tedious to resolve for those with limited experience in machine learning. Avoiding overfitting, for example, requires extensive knowledge of an algorithm's unique characteristics (e.g., adding dropout layers). Autotuning tools are excellent for creating baseline models on new datasets, but they need more attention to formulate optimal solutions for end-users with less background in deep learning. Because of this, manual tuning based on domain knowledge and experience is still preferred in machine learning because it produces better performance, even though it requires extensive machine learning expertise.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xxxrass完成签到 ,获得积分10
1秒前
2秒前
kenti2023完成签到 ,获得积分10
3秒前
大气的画板完成签到 ,获得积分10
3秒前
大溺完成签到 ,获得积分10
4秒前
美好的绿真完成签到 ,获得积分10
5秒前
小瓜完成签到 ,获得积分10
5秒前
kalcspin完成签到 ,获得积分10
5秒前
oleskarabach完成签到,获得积分20
5秒前
mmyhn完成签到,获得积分10
6秒前
mmz完成签到 ,获得积分10
6秒前
6秒前
思源应助huwl采纳,获得10
6秒前
7秒前
珂珂完成签到 ,获得积分10
7秒前
7秒前
lhx完成签到,获得积分10
9秒前
整齐的惮完成签到 ,获得积分10
9秒前
win完成签到 ,获得积分10
9秒前
呱呱发布了新的文献求助10
9秒前
Sunday完成签到 ,获得积分10
10秒前
千寻完成签到,获得积分10
11秒前
衣蝉完成签到 ,获得积分10
11秒前
juejue333完成签到,获得积分10
12秒前
苦瓜大王关注了科研通微信公众号
12秒前
恋雅颖月完成签到 ,获得积分10
12秒前
核桃应助Dolbar采纳,获得10
12秒前
科研通AI6应助科研小渣渣采纳,获得10
14秒前
文武完成签到 ,获得积分0
15秒前
张先生2365完成签到,获得积分10
17秒前
18秒前
meimei完成签到 ,获得积分10
18秒前
耶耶完成签到 ,获得积分10
19秒前
姆姆没买完成签到 ,获得积分0
19秒前
Crystal完成签到 ,获得积分10
19秒前
WYT完成签到 ,获得积分10
19秒前
健康的琳完成签到,获得积分10
20秒前
20秒前
大太阳发布了新的文献求助20
23秒前
2032jia应助kk采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
肥厚型心肌病新致病基因突变的筛选验证和功能研究 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4566736
求助须知:如何正确求助?哪些是违规求助? 3990079
关于积分的说明 12354063
捐赠科研通 3661728
什么是DOI,文献DOI怎么找? 2017823
邀请新用户注册赠送积分活动 1052313
科研通“疑难数据库(出版商)”最低求助积分说明 939837