Electric load prediction based on a novel combined interval forecasting system

区间(图论) 计算机科学 可靠性工程 工程类 运筹学 数学 组合数学
作者
Jianzhou Wang,Jialu Gao,Danxiang Wei
出处
期刊:Applied Energy [Elsevier BV]
卷期号:322: 119420-119420 被引量:34
标识
DOI:10.1016/j.apenergy.2022.119420
摘要

• A novel CElif system is proposed in this paper. • Decomposition and denoising strategy is designed in the CElif system. • The MSsa mechanism is superior both in search ability and operation efficiency. • The construction of the five ANNs covers the inherent modes of sequence. • Differences in people's behavior on weekdays and weekends are considered. Under the trend of the global green and low-carbon transformation, accurate prediction of electric load is an urgent problem for all countries to maintain the normal operation of production and living activities. Currently, a large number of models based on single-point forecasting of electric load have emerged. However, these models are limited by the high randomness of electric load data, which restricts the further improvement of prediction accuracy. To fill this gap, a CElif (Combined Electric Load Interval Forecasting) system is proposed in this paper, which contains decomposition and denoising module, individual forecasting module, optimization module and evaluation module, aiming to tolerate uncertainty to provide policymakers with more information. Decomposition and denoising strategy is adopted to extract and reconstruct the inherent modes of the original sequence. In order to verify the superiority of the CElif system, the electric load data of 30-minute interval in Australia are used to test. The numerical results conclude the CElif system not only has excellent coverage performance in electric load interval prediction, controls the uncertainty to a great extent, but also provides a basis for power system dispatching management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
biubiufan完成签到,获得积分10
1秒前
lxbu完成签到,获得积分10
1秒前
2秒前
万能图书馆应助GFCFHGJK采纳,获得10
3秒前
3秒前
糖醋鱼完成签到,获得积分20
5秒前
lxbu发布了新的文献求助10
7秒前
7秒前
SciGPT应助靓丽的发箍采纳,获得10
7秒前
PA发布了新的文献求助10
8秒前
eric888应助陈志成采纳,获得30
8秒前
hua发布了新的文献求助10
8秒前
愤怒的凉面完成签到,获得积分10
8秒前
橘络完成签到 ,获得积分10
9秒前
畅快妙竹完成签到,获得积分10
10秒前
孤独雪碧发布了新的文献求助10
12秒前
明理的以亦完成签到,获得积分10
12秒前
瓷儿发布了新的文献求助10
13秒前
Hello应助愤怒的凉面采纳,获得10
14秒前
jinlidan发布了新的文献求助10
16秒前
Xiongcf发布了新的文献求助10
16秒前
16秒前
17秒前
科目三应助Ki采纳,获得10
17秒前
17秒前
19秒前
Z赵完成签到 ,获得积分10
19秒前
20秒前
斯文败类应助失眠雨采纳,获得10
20秒前
qwerty完成签到,获得积分10
20秒前
俏皮的傲云完成签到,获得积分10
20秒前
20秒前
11发布了新的文献求助10
20秒前
20秒前
Rainss3完成签到,获得积分20
21秒前
SLY发布了新的文献求助10
21秒前
21秒前
22秒前
23秒前
暖楠完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088946
求助须知:如何正确求助?哪些是违规求助? 4303807
关于积分的说明 13412545
捐赠科研通 4129492
什么是DOI,文献DOI怎么找? 2261479
邀请新用户注册赠送积分活动 1265554
关于科研通互助平台的介绍 1200181