BETA: a comprehensive benchmark for computational drug–target prediction

水准点(测量) 计算机科学 机器学习 药物重新定位 人工智能 数据挖掘 重新调整用途 选择(遗传算法) 洗牌 药品 生物 大地测量学 药理学 地理 程序设计语言 生态学
作者
Nansu Zong,Ning Li,Andrew Wen,Victoria K. Ngo,Yue Yu,Ming Huang,Shaika Chowdhury,Chao Jiang,Sunyang Fu,Richard M. Weinshilboum,Guoqian Jiang,Lawrence Hunter,Hongfang Liu
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (4) 被引量:2
标识
DOI:10.1093/bib/bbac199
摘要

Abstract Internal validation is the most popular evaluation strategy used for drug–target predictive models. The simple random shuffling in the cross-validation, however, is not always ideal to handle large, diverse and copious datasets as it could potentially introduce bias. Hence, these predictive models cannot be comprehensively evaluated to provide insight into their general performance on a variety of use-cases (e.g. permutations of different levels of connectiveness and categories in drug and target space, as well as validations based on different data sources). In this work, we introduce a benchmark, BETA, that aims to address this gap by (i) providing an extensive multipartite network consisting of 0.97 million biomedical concepts and 8.5 million associations, in addition to 62 million drug–drug and protein–protein similarities and (ii) presenting evaluation strategies that reflect seven cases (i.e. general, screening with different connectivity, target and drug screening based on categories, searching for specific drugs and targets and drug repurposing for specific diseases), a total of seven Tests (consisting of 344 Tasks in total) across multiple sampling and validation strategies. Six state-of-the-art methods covering two broad input data types (chemical structure- and gene sequence-based and network-based) were tested across all the developed Tasks. The best-worst performing cases have been analyzed to demonstrate the ability of the proposed benchmark to identify limitations of the tested methods for running over the benchmark tasks. The results highlight BETA as a benchmark in the selection of computational strategies for drug repurposing and target discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
一只医学dog完成签到 ,获得积分10
2秒前
2秒前
乙醇完成签到 ,获得积分10
2秒前
呆萌小海豚发布了新的文献求助200
2秒前
2秒前
传奇3应助缥缈的芷卉采纳,获得10
2秒前
2秒前
Asuka完成签到,获得积分10
3秒前
3秒前
青稞发布了新的文献求助10
4秒前
huhuan发布了新的文献求助10
4秒前
卡卡西应助PPFF采纳,获得30
5秒前
小洋发布了新的文献求助10
5秒前
5秒前
5秒前
栗子糕发布了新的文献求助10
5秒前
花小胖发布了新的文献求助10
6秒前
6秒前
东方巧曼发布了新的文献求助10
6秒前
李帆发布了新的文献求助10
6秒前
BBQ发布了新的文献求助30
7秒前
7秒前
一指墨发布了新的文献求助10
7秒前
Ava应助小菅采纳,获得20
7秒前
8秒前
还是别了叭完成签到,获得积分10
8秒前
完美世界应助伍小颖酱采纳,获得10
9秒前
9秒前
谷捣猫宁发布了新的文献求助10
10秒前
Ziyi_Xu完成签到,获得积分10
10秒前
Lucy发布了新的文献求助10
10秒前
毅然完成签到,获得积分10
11秒前
含糊的月饼完成签到 ,获得积分10
12秒前
林洋发布了新的文献求助40
12秒前
12秒前
yurbb发布了新的文献求助10
13秒前
13秒前
科研学渣请大神带完成签到,获得积分10
13秒前
栗子糕完成签到,获得积分10
14秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3810013
求助须知:如何正确求助?哪些是违规求助? 3354509
关于积分的说明 10371378
捐赠科研通 3070976
什么是DOI,文献DOI怎么找? 1686693
邀请新用户注册赠送积分活动 811058
科研通“疑难数据库(出版商)”最低求助积分说明 766484