Support Vector Machine versus Multiple Logistic Regression for Prediction of Postherpetic Neuralgia in Outpatients with Herpes Zoster.

疱疹后神经痛 医学 逻辑回归 接收机工作特性 回顾性队列研究 神经痛 Lasso(编程语言) 内科学 麻醉 神经病理性疼痛 万维网 计算机科学
作者
Jie Zhang,Qiao Ding,Xiu-Liang Li,Yiwei Hao,Ying Yang
出处
期刊:PubMed 卷期号:25 (3): E481-E488 被引量:7
链接
标识
摘要

Postherpetic neuralgia (PHN), as the most common complication of herpes zoster (HZ), is very refractory to current therapies. Studies of HZ have indicated that early aggressive pain interventions can effectively prevent PHN; therefore, accurately predicting PHN in outpatients with HZ and treating HZ promptly, would be of great benefit to patients. Multiple logistic regression (MLR) has often been used to predict PHN. However, support vector machine (SVM) has been poorly studied in predicting PHN in outpatients with HZ.The aim of our retrospective study was to analyze the data of outpatients with HZ to evaluate the use of SVM for predicting PHN by comparing it with MLR.A retrospective study.Department of Anesthesiology in China.The data of 732 outpatients with HZ from January 1, 2015 to May 31, 2020 were reviewed. Risk factors for having PHN in outpatients with HZ were screened using least absolute shrinkage and selection operator (LASSO) algorithm. Then, SVM and MLR were used to predict PHN in outpatients with HZ based on screened risk factors. The data from 600 patients were used for training set and another 132 patients for test set. The receiver operating characteristic (ROC) curve was drawn from the 132 test set of patients. The prediction accuracy of the models was assessed using the area under curve (AUC).The incidence of having PHN in outpatients with HZ was 19.4%. The risk factors selected by LASSO algorithm were gender, age, VAS scores, skin lesion area, initial treatment time, anxiety, sites of HZ (multiple skin lesions), types of HZ (bullous) and types of pain (knife cutting). The AUC for the SVM and MLR in test set were 0.884 versus 0.853. According to the ROC curve, the specificity and the sensitivity were 0.879 and 0.840 for SVM, and 0.780 and 0.840 for MLR, respectively.Retrospective study and relatively small sample size.Both SVM and MLR had good discriminative power, but SVM has better performance in predicting PHN in outpatients with HZ, regarding the prediction accuracy and specificity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苹什猫发布了新的文献求助10
1秒前
李爱国应助张巨锋采纳,获得10
1秒前
小鱼完成签到 ,获得积分10
1秒前
CodeCraft应助疯狂卷心菜采纳,获得10
1秒前
JamesPei应助wg采纳,获得10
2秒前
zgnh发布了新的文献求助10
2秒前
hewit完成签到 ,获得积分10
2秒前
anyycui发布了新的文献求助10
2秒前
邓木木完成签到,获得积分20
2秒前
量子星尘发布了新的文献求助10
2秒前
感动凝荷完成签到,获得积分20
2秒前
Jacky完成签到,获得积分10
2秒前
科目三应助Sakura采纳,获得10
3秒前
3秒前
科研通AI2S应助小李医生采纳,获得10
3秒前
ding应助哭泣的书兰采纳,获得10
3秒前
大个应助Lc20020320采纳,获得10
4秒前
浮游应助江树远采纳,获得10
4秒前
FashionBoy应助ws采纳,获得10
4秒前
angel发布了新的文献求助10
4秒前
领导范儿应助LBM采纳,获得10
4秒前
啊姜姜姜姜姜完成签到 ,获得积分10
4秒前
BowieHuang应助读书的时候采纳,获得10
4秒前
wei完成签到,获得积分10
5秒前
Dengera完成签到,获得积分10
5秒前
5秒前
帅气善斓应助喵喵采纳,获得10
5秒前
ding应助炙热问薇采纳,获得10
5秒前
陌上花开完成签到,获得积分10
5秒前
帅气善斓应助Zhuzhu采纳,获得10
6秒前
xsq完成签到,获得积分10
6秒前
向浩完成签到,获得积分10
6秒前
111发布了新的文献求助10
6秒前
CD完成签到 ,获得积分10
7秒前
7秒前
7秒前
jun发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5702211
求助须知:如何正确求助?哪些是违规求助? 5146544
关于积分的说明 15236307
捐赠科研通 4857061
什么是DOI,文献DOI怎么找? 2606252
邀请新用户注册赠送积分活动 1557530
关于科研通互助平台的介绍 1515329