TNSNet: Thyroid nodule segmentation in ultrasound imaging using soft shape supervision

计算机科学 分割 人工智能 甲状腺结节 计算机视觉 深度学习 可视化 反褶积 结核(地质) 模式识别(心理学) 图像分割 路径(计算) 散斑噪声 人工神经网络 斑点图案 甲状腺 医学 算法 古生物学 内科学 生物 程序设计语言
作者
Jiawei Sun,Chunying Li,Zhengda Lu,Mu He,Tong Zhao,Xiaoqin Li,Liugang Gao,Kai Xie,Tao Lin,Jianfeng Sui,Qianyi Xi,Fan Zhang,Xinye Ni
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:215: 106600-106600 被引量:41
标识
DOI:10.1016/j.cmpb.2021.106600
摘要

Thyroid nodules are a common disorder of the endocrine system. Segmentation of thyroid nodules on ultrasound images is an important step in the evaluation and diagnosis of nodules and an initial step in computer-aided diagnostic systems. The accuracy and consistency of segmentation remain a challenge due to the low contrast, speckle noise, and low resolution of ultrasound images. Therefore, the study of deep learning-based algorithms for thyroid nodule segmentation is important. This study utilizes soft shape supervision to improve the performance of detection and segmentation of boundaries of nodules. Soft shape supervision can emphasize the boundary features and assist the network in segmenting nodules accurately.We propose a dual-path convolution neural network, including region and shape paths, which use DeepLabV3+ as the backbone. Soft shape supervision blocks are inserted between the two paths to implement cross-path attention mechanisms. The blocks enhance the representation of shape features and add them to the region path as auxiliary information. Thus, the network can accurately detect and segment thyroid nodules.We collect 3786 ultrasound images of thyroid nodules to train and test our network. Compared with the ground truth, the test results achieve an accuracy of 95.81% and a DSC of 85.33. The visualization results also suggest that the network has learned clear and accurate boundaries of the nodules. The evaluation metrics and visualization results demonstrate the superior segmentation performance of the network to other classical deep learning-based networks.The proposed dual-path network can accurately realize automatic segmentation of thyroid nodules on ultrasound images. It can also be used as an initial step in computer-aided diagnosis. It shows superior performance to other classical methods and demonstrates the potential for accurate segmentation of nodules in clinical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助月亮采纳,获得10
刚刚
12完成签到,获得积分10
刚刚
1秒前
高高雪瑶完成签到,获得积分10
1秒前
浅笑安然完成签到,获得积分10
2秒前
浪费完成签到 ,获得积分10
2秒前
12发布了新的文献求助10
3秒前
热心的秋莲完成签到,获得积分10
3秒前
丙子哥发布了新的文献求助10
5秒前
Zhy发布了新的文献求助10
5秒前
就叫柠檬吧应助太叔书南采纳,获得10
7秒前
揽星色完成签到,获得积分10
9秒前
传奇3应助bingice7采纳,获得10
9秒前
科研通AI2S应助李小羊采纳,获得10
12秒前
wl完成签到,获得积分10
13秒前
14秒前
CipherSage应助啦啦啦采纳,获得10
14秒前
文静大娘发布了新的文献求助10
17秒前
月亮发布了新的文献求助10
17秒前
17秒前
桐桐应助小熊猫采纳,获得10
19秒前
大模型应助Ghiocel采纳,获得10
19秒前
范丞丞发布了新的文献求助20
20秒前
Mialy完成签到,获得积分10
21秒前
21秒前
jie完成签到,获得积分10
22秒前
22秒前
23秒前
bingice7给bingice7的求助进行了留言
23秒前
123456发布了新的文献求助10
24秒前
绝不内耗发布了新的文献求助10
24秒前
虚幻的蘑菇完成签到,获得积分10
25秒前
26秒前
FashionBoy应助高贵的青槐采纳,获得30
26秒前
diyi发布了新的文献求助10
26秒前
985博士发布了新的文献求助10
26秒前
万能图书馆应助盼盼采纳,获得10
27秒前
27秒前
mmluo完成签到,获得积分10
28秒前
身处人海完成签到,获得积分10
28秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800140
求助须知:如何正确求助?哪些是违规求助? 3345459
关于积分的说明 10325049
捐赠科研通 3061931
什么是DOI,文献DOI怎么找? 1680614
邀请新用户注册赠送积分活动 807158
科研通“疑难数据库(出版商)”最低求助积分说明 763509