清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Intelligent Path Planning of Underwater Robot Based on Reinforcement Learning

运动规划 水下 强化学习 避障 障碍物 机器人 计算机科学 路径(计算) 理论(学习稳定性) 实时计算 人工智能 移动机器人 机器学习 海洋学 法学 程序设计语言 地质学 政治学
作者
Jiachen Yang,Jingfei Ni,Meng Xi,Jiabao Wen,Yang Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1983-1996 被引量:37
标识
DOI:10.1109/tase.2022.3190901
摘要

As one of the commonly used vehicles for underwater detection, underwater robots are facing a series of problems. The real underwater environment is large-scale, complex, real-time and dynamic, and many unknown obstacles may exist in the underwater environment. Under such complex conditions and lack of prior knowledge, the existing path planning methods are difficult to plan, therefore they cannot effectively meet the actual demands. In response to these problems, a three-dimensional marine environment including multiple obstacles is established with the real ocean current data in this paper, which is consistent with the actual application scenarios. Then, we propose an N-step Priority Double DQN (NPDDQN) path planning algorithm, which potently realizes obstacle avoidance in the complex environment. In addition, this study proposes an experience screening mechanism, which screens the explored positive experience and improves its reuse rate, thus efficiently improving the algorithm stability in the dynamic environment. This paper verifies the better performance of reinforcement learning compared with a variety of traditional methods in three-dimensional underwater path planning. Underwater robots based on the proposed method have good autonomy and stability, which provides a new method for path planning of underwater robots. Note to Practitioners —The goal of this study is to provide a new solution for obstacle avoidance in path planning of underwater robots, which is consistent with the dynamic and real-time demands of the real environment. Existing underwater path planning researches lack a consistent environment with the actual application, and therefore we firstly construct a three-dimensional ocean environment with real ocean current data to provide support for the algorithms. Additionally, most of the algorithms are pre-planning methods or require long-time calculation, and there is little research on obstacle avoidance. In the face of obstacle changes, underwater robots with poor adaptability will cause performance decline and even economic losses. The proposed algorithm learns through interaction with the environment, and therefore it does not require any prior experience, and has good adaptability as well as fast inference speed. Especially, in the dynamic environment, algorithm performance is difficult to guarantee due to less positive experience in exploration. The proposed experience screening mechanism improves the stability of the algorithm, so that the underwater robot maintains stable performance in different dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
6秒前
51秒前
2分钟前
cadcae完成签到,获得积分10
2分钟前
萝卜猪完成签到,获得积分10
3分钟前
会笑的蜗牛完成签到 ,获得积分10
3分钟前
浮云完成签到 ,获得积分10
3分钟前
juan完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
SciGPT应助科研通管家采纳,获得10
4分钟前
4分钟前
ning_qing完成签到 ,获得积分10
4分钟前
mzhang2完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
王淳完成签到 ,获得积分10
5分钟前
神外魔法师完成签到,获得积分10
5分钟前
5433完成签到 ,获得积分10
5分钟前
牛马完成签到 ,获得积分10
6分钟前
紫熊完成签到,获得积分10
7分钟前
CodeCraft应助快乐小狗采纳,获得10
8分钟前
白菜完成签到 ,获得积分10
8分钟前
woxinyouyou完成签到,获得积分0
9分钟前
满意的伊完成签到,获得积分10
9分钟前
宇文非笑完成签到 ,获得积分10
9分钟前
bc应助科研通管家采纳,获得30
10分钟前
bc应助科研通管家采纳,获得30
10分钟前
bc应助科研通管家采纳,获得30
10分钟前
bc应助科研通管家采纳,获得30
10分钟前
知行者完成签到 ,获得积分10
11分钟前
11分钟前
快乐小狗发布了新的文献求助10
11分钟前
桐桐应助快乐小狗采纳,获得10
12分钟前
CherylZhao完成签到,获得积分10
12分钟前
bc应助科研通管家采纳,获得30
12分钟前
ZJakariae应助科研通管家采纳,获得10
12分钟前
科研通AI2S应助科研通管家采纳,获得10
12分钟前
万能图书馆应助Tiger-Cheng采纳,获得20
12分钟前
13分钟前
bc应助科研通管家采纳,获得30
14分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815818
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402318
捐赠科研通 3077196
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767728