Intelligent Path Planning of Underwater Robot Based on Reinforcement Learning

运动规划 水下 强化学习 避障 障碍物 机器人 计算机科学 路径(计算) 理论(学习稳定性) 实时计算 人工智能 移动机器人 机器学习 程序设计语言 海洋学 政治学 法学 地质学
作者
Jiachen Yang,Jingfei Ni,Meng Xi,Jiabao Wen,Yang Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:20 (3): 1983-1996 被引量:38
标识
DOI:10.1109/tase.2022.3190901
摘要

As one of the commonly used vehicles for underwater detection, underwater robots are facing a series of problems. The real underwater environment is large-scale, complex, real-time and dynamic, and many unknown obstacles may exist in the underwater environment. Under such complex conditions and lack of prior knowledge, the existing path planning methods are difficult to plan, therefore they cannot effectively meet the actual demands. In response to these problems, a three-dimensional marine environment including multiple obstacles is established with the real ocean current data in this paper, which is consistent with the actual application scenarios. Then, we propose an N-step Priority Double DQN (NPDDQN) path planning algorithm, which potently realizes obstacle avoidance in the complex environment. In addition, this study proposes an experience screening mechanism, which screens the explored positive experience and improves its reuse rate, thus efficiently improving the algorithm stability in the dynamic environment. This paper verifies the better performance of reinforcement learning compared with a variety of traditional methods in three-dimensional underwater path planning. Underwater robots based on the proposed method have good autonomy and stability, which provides a new method for path planning of underwater robots. Note to Practitioners —The goal of this study is to provide a new solution for obstacle avoidance in path planning of underwater robots, which is consistent with the dynamic and real-time demands of the real environment. Existing underwater path planning researches lack a consistent environment with the actual application, and therefore we firstly construct a three-dimensional ocean environment with real ocean current data to provide support for the algorithms. Additionally, most of the algorithms are pre-planning methods or require long-time calculation, and there is little research on obstacle avoidance. In the face of obstacle changes, underwater robots with poor adaptability will cause performance decline and even economic losses. The proposed algorithm learns through interaction with the environment, and therefore it does not require any prior experience, and has good adaptability as well as fast inference speed. Especially, in the dynamic environment, algorithm performance is difficult to guarantee due to less positive experience in exploration. The proposed experience screening mechanism improves the stability of the algorithm, so that the underwater robot maintains stable performance in different dynamic environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦初兰完成签到,获得积分10
1秒前
1秒前
努力让自己爱科研的小刘完成签到,获得积分10
1秒前
1秒前
看来斯蒂芬完成签到,获得积分10
1秒前
1秒前
11235应助追逐123采纳,获得10
2秒前
3秒前
3秒前
5秒前
哪位完成签到,获得积分10
5秒前
周而复始@发布了新的文献求助10
5秒前
斯文败类应助吐丝麵包采纳,获得10
6秒前
unless完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
深情安青应助dxtmm采纳,获得10
8秒前
yyydsg完成签到,获得积分10
8秒前
10秒前
11秒前
多情从筠发布了新的文献求助10
12秒前
菜菜爱吃花完成签到 ,获得积分10
12秒前
和安完成签到,获得积分10
13秒前
酷波er应助v如何率采纳,获得10
13秒前
辛欣完成签到,获得积分10
13秒前
情怀应助斑其采纳,获得10
15秒前
16秒前
星辰大海应助周而复始@采纳,获得10
16秒前
17秒前
18秒前
和安发布了新的文献求助10
18秒前
19秒前
19秒前
oligive完成签到,获得积分10
21秒前
21秒前
dxtmm发布了新的文献求助10
21秒前
月上卿云发布了新的文献求助30
22秒前
22秒前
科目三应助风中的语堂采纳,获得10
23秒前
一星发布了新的文献求助10
23秒前
jiuyuan135发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Architectural Corrosion and Critical Infrastructure 400
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4855566
求助须知:如何正确求助?哪些是违规求助? 4152433
关于积分的说明 12868536
捐赠科研通 3902242
什么是DOI,文献DOI怎么找? 2144120
邀请新用户注册赠送积分活动 1163753
关于科研通互助平台的介绍 1064357