DeepCQ+: Robust and Scalable Routing with Multi-Agent Deep Reinforcement Learning for Highly Dynamic Networks

计算机科学 强化学习 可扩展性 路由协议 分布式计算 稳健性(进化) 计算机网络 链路状态路由协议 无线路由协议 移动自组网 布线(电子设计自动化) 人工智能 数据库 基因 生物化学 网络数据包 化学
作者
Saeed Kaviani,Bo Ryu,Ejaz Ahmed,Kevin Larson,Anh D. Le,Alex Yahja,Jae Nyoung Kim
标识
DOI:10.1109/milcom52596.2021.9652948
摘要

Highly dynamic mobile ad-hoc networks (MANETs) remain as one of the most challenging environments to develop and deploy robust, efficient, and scalable routing protocols. In this paper, we present DeepCQ+ routing protocol which, in a novel manner, integrates emerging multi-agent deep reinforcement learning (MADRL) techniques into existing Q-learning-based routing protocols and their variants, and achieves persistently higher performance across a wide range of topology and mobility configurations. While keeping the overall protocol structure of the Q-learning-based routing protocols, DeepCQ+ replaces statically configured parameterized thresholds and hand-written rules with carefully designed MADRL agents such that no configuration of such parameters is required a priori. Extensive simulation shows that DeepCQ+ yields significantly increased end-to-end throughput with lower overhead and no apparent degradation of end-to-end delays (hop counts) compared to its Q-learning-based counterparts. Qualitatively, and perhaps more significantly, DeepCQ+ maintains remarkably similar performance gains under many scenarios that it was not trained for in terms of network sizes, mobility conditions, and traffic dynamics. To the best of our knowledge, this is the first successful application of the MADRL framework for the MANET routing problem that demonstrates a high degree of scalability and robustness even under the environments that are outside the trained range of scenarios. This implies that our MARL-based DeepCQ+ design solution significantly improves the performance of Q-learning-based CQ+ baseline approach for comparison and increases its practicality and explainability because the real-world MANET environment will likely vary outside the trained range of MANET scenarios. Additional techniques to further increase the gains in performance and scalability are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不争馒头争口气完成签到,获得积分10
1秒前
11完成签到 ,获得积分10
1秒前
ww完成签到,获得积分10
1秒前
阿九完成签到,获得积分10
2秒前
2秒前
3秒前
带头大哥应助Nancy采纳,获得100
4秒前
落寞元芹发布了新的文献求助10
4秒前
6秒前
zly发布了新的文献求助10
6秒前
112我的完成签到,获得积分10
7秒前
9秒前
语亦菲扬921完成签到,获得积分10
11秒前
科研通AI5应助学术渣渣采纳,获得10
12秒前
12秒前
ALU完成签到 ,获得积分10
12秒前
北海发布了新的文献求助10
12秒前
14秒前
小范完成签到 ,获得积分10
14秒前
15秒前
zly完成签到,获得积分10
16秒前
16秒前
Hello应助蟹蟹采纳,获得10
17秒前
17秒前
hcsdgf发布了新的文献求助10
19秒前
zy发布了新的文献求助10
20秒前
易千妤发布了新的文献求助10
20秒前
llooookk发布了新的文献求助10
21秒前
北镬伐完成签到,获得积分10
22秒前
斯文败类应助哈哈嘻嘻采纳,获得20
22秒前
22秒前
23秒前
学术渣渣发布了新的文献求助10
24秒前
24秒前
24秒前
小尾巴完成签到 ,获得积分10
24秒前
铎铎铎完成签到 ,获得积分10
24秒前
26秒前
27秒前
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846452
求助须知:如何正确求助?哪些是违规求助? 3388937
关于积分的说明 10555074
捐赠科研通 3109328
什么是DOI,文献DOI怎么找? 1713694
邀请新用户注册赠送积分活动 824842
科研通“疑难数据库(出版商)”最低求助积分说明 775068