Heavy Overload Prediction Method of Distribution Transformer Based on GBDT

变压器 计算机科学 配电变压器 决策树 可靠性工程 电压 数据挖掘 工程类 电气工程
作者
Ganglong Duan,Weiyu Han
出处
期刊:International Journal of Pattern Recognition and Artificial Intelligence [World Scientific]
卷期号:36 (09) 被引量:6
标识
DOI:10.1142/s0218001422590145
摘要

The distribution transformer voltage may be overloaded, which may lead to the aging of distribution transformer components, shorten the service life of distribution transformer components and even affect the daily life of community residents and the operation of enterprises. A large amount of real data are collected, and the factors that affect the heavy overload of distribution transformer are comprehensively considered from multiple angles, so as to establish a model for future prediction and early maintenance to reduce losses. First, the collected data is analyzed by attributes and preprocessed to improve the quality of the data. Then, the time attributes are generalized according to seasons, months, holidays and weekends. The test results show that the data prediction value is more accurate when generalized according to seasons. For the prediction model, the gradient lifting decision tree algorithm is selected to establish the model, and then the parameters are further optimized, and finally the model is evaluated. Lastly, the prediction accuracy of the model reaches a high level, and it can be determined that the prediction is close to the objective fact. The model can be used to predict the heavy overload of distribution transformer voltage, so as to reduce the loss caused by abnormal conditions of relevant equipment for the enterprises.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaarfv发布了新的文献求助10
1秒前
1秒前
JamesPei应助王麒采纳,获得10
2秒前
斯文败类应助王麒采纳,获得10
2秒前
张振发布了新的文献求助30
2秒前
兆吉完成签到 ,获得积分10
2秒前
哈哈发布了新的文献求助30
3秒前
3秒前
巫马尔槐发布了新的文献求助10
3秒前
4秒前
万能青年发布了新的文献求助10
4秒前
Koalas应助喜欢玩辅助采纳,获得10
4秒前
要减肥书桃完成签到 ,获得积分10
5秒前
下山完成签到,获得积分10
5秒前
6秒前
vv发布了新的文献求助10
6秒前
搜集达人应助周周采纳,获得10
7秒前
Orange应助懒羊羊采纳,获得10
7秒前
7秒前
7秒前
英勇醉山发布了新的文献求助10
8秒前
10秒前
orixero应助小钥匙采纳,获得10
10秒前
12秒前
zxc发布了新的文献求助10
12秒前
宋怡慷发布了新的文献求助10
13秒前
CipherSage应助酚羟基装醇采纳,获得10
14秒前
15秒前
16秒前
16秒前
852应助vv采纳,获得10
17秒前
18秒前
18秒前
19秒前
19秒前
狂野的访文完成签到,获得积分10
19秒前
19秒前
19秒前
20秒前
宋怡慷完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5184290
求助须知:如何正确求助?哪些是违规求助? 4370215
关于积分的说明 13609186
捐赠科研通 4222222
什么是DOI,文献DOI怎么找? 2315714
邀请新用户注册赠送积分活动 1314262
关于科研通互助平台的介绍 1263207