LCSNet: End-to-end Lipreading with Channel-aware Feature Selection

计算机科学 语音识别 发音 人工智能 特征(语言学) 任务(项目管理) 连接主义 模式识别(心理学) 人工神经网络 频道(广播) 过程(计算) 解码方法 计算机网络 电信 哲学 语言学 管理 经济 操作系统
作者
Feng Xue,Tian Yang,Kang Liu,Zikun Hong,Mingwei Cao,Dan Guo,Richang Hong
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
卷期号:19 (1s): 1-21 被引量:5
标识
DOI:10.1145/3524620
摘要

Lipreading is a task of decoding the movement of the speaker’s lip region into text. In recent years, lipreading methods based on deep neural network have attracted widespread attention, and the accuracy has far surpassed that of experienced human lipreaders. The visual differences in some phonemes are extremely subtle and pose a great challenge to lipreading. Most of the lipreading existing methods do not process the extracted visual features, which mainly suffer from two problems. First, the extracted features contain lot of useless information such as noise caused by differences in speech speed and lip shape, for example. In addition, the extracted features are not abstract enough to distinguish phonemes with similar pronunciation. These problems have a bad effect on the performance of lipreading. To extract features from the lip regions that are more distinguishable and more relevant to the speech content, this article proposes an end-to-end deep neural network-based lipreading model (LCSNet). The proposed model extracts the short-term spatio-temporal features and the motion trajectory features from the lip region in the video clips. The extracted features are filtered by the channel attention module to eliminate the useless features and then used as input to the proposed Selective Feature Fusion Module (SFFM) to extract the high-level abstract features. Afterwards, these features are used as input to the bidirectional GRU network in time order for temporal modeling to obtain the long-term spatio-temporal features. Finally, a Connectionist Temporal Classification (CTC) decoder is used to generate the output text. The experimental results show that the proposed model achieves a 1.0% CER and 2.3% WER on the GRID corpus database, which, respectively, represents an improvement of 52% and 47% compared to LipNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lili完成签到,获得积分10
刚刚
hi_zhanghao完成签到,获得积分0
刚刚
yulong发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
刚刚
四九_完成签到,获得积分10
刚刚
hff完成签到 ,获得积分10
刚刚
viogriffin完成签到,获得积分10
刚刚
万能图书馆应助陈__采纳,获得10
1秒前
bybyby完成签到,获得积分10
1秒前
舒适笑容完成签到,获得积分10
1秒前
科目三应助Phyllis采纳,获得10
3秒前
菜头完成签到,获得积分10
3秒前
海狗发布了新的文献求助10
3秒前
于于于完成签到,获得积分10
3秒前
舒适的冰凡完成签到,获得积分10
4秒前
风城玫瑰发布了新的文献求助30
5秒前
简云铃完成签到,获得积分10
5秒前
CodeCraft应助HYN采纳,获得10
6秒前
6秒前
不安的电脑完成签到,获得积分10
6秒前
6秒前
未来完成签到,获得积分20
6秒前
李健的小迷弟应助郭伟采纳,获得30
7秒前
林深完成签到,获得积分10
7秒前
华仔应助hh采纳,获得10
7秒前
伟钧完成签到,获得积分10
7秒前
8秒前
8秒前
善学以致用应助杨涵采纳,获得10
9秒前
小乐完成签到,获得积分10
10秒前
愉快尔烟完成签到,获得积分10
10秒前
zby完成签到,获得积分10
10秒前
凶狠的雁芙完成签到,获得积分10
10秒前
南宫书瑶完成签到,获得积分10
10秒前
10秒前
Zzz完成签到,获得积分10
11秒前
11秒前
jkhjkhj完成签到,获得积分10
11秒前
棍棍来也完成签到,获得积分10
11秒前
12秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3875502
求助须知:如何正确求助?哪些是违规求助? 3418092
关于积分的说明 10706558
捐赠科研通 3142692
什么是DOI,文献DOI怎么找? 1733983
邀请新用户注册赠送积分活动 836316
科研通“疑难数据库(出版商)”最低求助积分说明 782626