Super-resolution reconstruction of MR image with a novel residual learning network algorithm

残余物 计算机科学 卷积神经网络 算法 人工智能 块(置换群论) 图像分辨率 图像(数学) 深度学习 特征(语言学) 数学 语言学 哲学 几何学
作者
Jun Shi,Qingping Liu,Chaofeng Wang,Qi Zhang,Shihui Ying,Hongmei Xu
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:63 (8): 085011-085011 被引量:98
标识
DOI:10.1088/1361-6560/aab9e9
摘要

Spatial resolution is one of the key parameters of magnetic resonance imaging (MRI). The image super-resolution (SR) technique offers an alternative approach to improve the spatial resolution of MRI due to its simplicity. Convolutional neural networks (CNN)-based SR algorithms have achieved state-of-the-art performance, in which the global residual learning (GRL) strategy is now commonly used due to its effectiveness for learning image details for SR. However, the partial loss of image details usually happens in a very deep network due to the degradation problem. In this work, we propose a novel residual learning-based SR algorithm for MRI, which combines both multi-scale GRL and shallow network block-based local residual learning (LRL). The proposed LRL module works effectively in capturing high-frequency details by learning local residuals. One simulated MRI dataset and two real MRI datasets have been used to evaluate our algorithm. The experimental results show that the proposed SR algorithm achieves superior performance to all of the other compared CNN-based SR algorithms in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dui完成签到,获得积分10
刚刚
冷酷芫完成签到,获得积分10
1秒前
1秒前
小巧的笑旋完成签到 ,获得积分10
3秒前
3秒前
宛海发布了新的文献求助10
5秒前
大个应助焚心绚华绘采纳,获得10
5秒前
研猫完成签到 ,获得积分10
6秒前
6秒前
明天发布了新的文献求助10
6秒前
8秒前
8秒前
湫湫完成签到 ,获得积分10
9秒前
科目三应助直率新柔采纳,获得10
10秒前
Croissant完成签到 ,获得积分10
10秒前
核桃应助123采纳,获得10
10秒前
迷路远航完成签到,获得积分20
11秒前
11秒前
负责玉米完成签到,获得积分10
12秒前
他克莫司完成签到,获得积分10
12秒前
Owen应助修士采纳,获得10
12秒前
锡兰红茶发布了新的文献求助10
13秒前
13秒前
爆米花应助冷酷芫采纳,获得10
13秒前
斯文败类应助小卷采纳,获得10
14秒前
可爱的函函应助L-g-b采纳,获得10
15秒前
16秒前
16秒前
明天完成签到,获得积分20
18秒前
19秒前
19秒前
19秒前
19秒前
ssssbbbb完成签到,获得积分10
20秒前
完美世界应助任性的咖啡采纳,获得10
21秒前
21秒前
科研通AI5应助nn11采纳,获得30
22秒前
小王爱吃肉完成签到,获得积分20
22秒前
H-China发布了新的文献求助10
22秒前
缓慢的海云完成签到,获得积分10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3794786
求助须知:如何正确求助?哪些是违规求助? 3339647
关于积分的说明 10296816
捐赠科研通 3056360
什么是DOI,文献DOI怎么找? 1676964
邀请新用户注册赠送积分活动 804983
科研通“疑难数据库(出版商)”最低求助积分说明 762255