Optimal operation of multi-reservoir systems for increasing power generation using a seagull optimization algorithm and heading policy

航向(导航) 流入 算法 点(几何) 数学优化 计算机科学 功率(物理) 粒子群优化 数学 工程类 气象学 地理 航空航天工程 几何学 量子力学 物理
作者
Mohammad Ehteram,Fatemeh Barzegari Banadkooki,Chow Ming Fai,Mohsen Moslemzadeh,Michelle Sapitang,Ali Najah Ahmed,Dani Irwan,Ahmed El‐Shafie
出处
期刊:Energy Reports [Elsevier]
卷期号:7: 3703-3725 被引量:24
标识
DOI:10.1016/j.egyr.2021.06.008
摘要

Power supply is a key issue for decision-makers. The reservoir operation of multi-reservoir systems is an important aspect to consider in efforts to increase power generation. This research studies a multi-reservoir system comprising of the Khersan-I (KHI), Karoon-III (KAIII) and Karoon-IV (KAIV) with the intent being to increase power generation. To achieve this, the Two-Point Heading Rule was integrated with a new optimization algorithm, namely the Seagull Optimization Algorithm (SEOA). The Two-Point Heading Rule was used based on four distinct scenarios, namely Two-Point Heading Rule (1), Two-Point Heading Rule (2), Two-Point Heading Rule (3) and Two-Point Heading Rule (4). The Seagull Optimization Algorithm was then used to find two heading parameters of the TPHRs. The Seagull Optimization Algorithm was subsequently benchmarked against the Salp Swarm Algorithm (SSA), Bat Algorithm (BA) and the Shark Optimization Algorithm (SOA). Various inflow scenarios consisting of the first inflow scenario (dry condition), the second inflow scenario (normal) and the third inflow scenario (wet condition) were considered for the optimal operation of this multi-reservoir system. The results indicated that the global solution of the MSOO based on NLP for Two-Point Heading Rule (1) under the first inflow scenario and was 3.22 while the average solution of Seagull Optimization Algorithm, Salp Swarm Algorithm, Shark Optimization Algorithm, and Bat Algorithm in respective order was 3.25, 3.93, 4.87 and 6.03. The results indicated that the global solution of the MSOO based on NLP for Two-Point Heading Rule (1) under the second inflow scenario was 2.14 while the average best solution of Seagull Optimization Algorithm, Salp Swarm Algorithm, Shark Optimization Algorithm, and Bat Algorithm in respective order was 2.16, 2.98, 3.96, and 4.89. It can be concluded that the SEOA outperformed all of the other algorithms. It was also found that the SEOA based on the Two-Point Heading Rule (3) under the third inflow scenario provided the most power generation for the KHI and KAIV systems. A multi-criteria decision was utilized to choose the best algorithm and heading policy. The ensuing results indicate that the SEOA had the best performance out of all the algorithms based on Two-Point Heading Rule (3) and the third inflow scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
星辰大海应助jiannanwu采纳,获得10
5秒前
月龄发布了新的文献求助10
8秒前
9秒前
Pan发布了新的文献求助10
9秒前
10秒前
冷傲山河完成签到,获得积分20
12秒前
慕青应助文文采纳,获得10
13秒前
於依白完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助10
15秒前
朱文韬发布了新的文献求助10
17秒前
冷傲山河发布了新的文献求助10
17秒前
闪闪的YOSH完成签到,获得积分10
18秒前
积极的绫发布了新的文献求助10
19秒前
21秒前
21秒前
yy发布了新的文献求助10
21秒前
科研通AI6应助黑马王子采纳,获得10
22秒前
22秒前
22秒前
星辰大海应助孝顺的万声采纳,获得10
23秒前
24秒前
星之茧发布了新的文献求助10
25秒前
Yangon发布了新的文献求助10
25秒前
奋斗的猫咪完成签到,获得积分10
25秒前
Harry应助猫七采纳,获得10
26秒前
孙周发布了新的文献求助10
27秒前
27秒前
28秒前
应然忆完成签到 ,获得积分10
28秒前
弗洛伊德发布了新的文献求助10
28秒前
GGMJ完成签到,获得积分20
29秒前
盼盼完成签到 ,获得积分20
30秒前
J-R完成签到,获得积分10
30秒前
SciGPT应助llm采纳,获得10
31秒前
东风徐来完成签到,获得积分10
32秒前
32秒前
夏cai完成签到,获得积分10
34秒前
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536782
求助须知:如何正确求助?哪些是违规求助? 4624440
关于积分的说明 14592026
捐赠科研通 4564913
什么是DOI,文献DOI怎么找? 2502020
邀请新用户注册赠送积分活动 1480820
关于科研通互助平台的介绍 1452003