Disease variant prediction with deep generative models of evolutionary data

计算机科学 生成语法 人工智能 致病性 生成模型 计算模型 机器学习 计算生物学 生物 微生物学
作者
Jonathan Frazer,Pascal Notin,Mafalda Dias,Aidan N. Gomez,Joseph Min,Kelly Brock,Yarin Gal,Daniel Marks
出处
期刊:Nature [Springer Nature]
卷期号:599 (7883): 91-95 被引量:298
标识
DOI:10.1038/s41586-021-04043-8
摘要

Quantifying the pathogenicity of protein variants in human disease-related genes would have a marked effect on clinical decisions, yet the overwhelming majority (over 98%) of these variants still have unknown consequences1–3. In principle, computational methods could support the large-scale interpretation of genetic variants. However, state-of-the-art methods4–10 have relied on training machine learning models on known disease labels. As these labels are sparse, biased and of variable quality, the resulting models have been considered insufficiently reliable11. Here we propose an approach that leverages deep generative models to predict variant pathogenicity without relying on labels. By modelling the distribution of sequence variation across organisms, we implicitly capture constraints on the protein sequences that maintain fitness. Our model EVE (evolutionary model of variant effect) not only outperforms computational approaches that rely on labelled data but also performs on par with, if not better than, predictions from high-throughput experiments, which are increasingly used as evidence for variant classification12–16. We predict the pathogenicity of more than 36 million variants across 3,219 disease genes and provide evidence for the classification of more than 256,000 variants of unknown significance. Our work suggests that models of evolutionary information can provide valuable independent evidence for variant interpretation that will be widely useful in research and clinical settings. A new computational method, EVE, classifies human genetic variants in disease genes using deep generative models trained solely on evolutionary sequences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
皮卡皮卡丘完成签到 ,获得积分10
刚刚
聪慧橘子发布了新的文献求助10
刚刚
ayingjiang发布了新的文献求助10
1秒前
星启发布了新的文献求助10
1秒前
1秒前
2秒前
刺槐完成签到,获得积分10
2秒前
gjww应助细心又菱采纳,获得30
3秒前
3秒前
万能图书馆应助细心又菱采纳,获得10
3秒前
gjww应助细心又菱采纳,获得10
3秒前
4秒前
GoodSun完成签到,获得积分10
4秒前
坦率初柔完成签到,获得积分10
4秒前
刻苦的匪完成签到,获得积分10
4秒前
缓慢千易发布了新的文献求助10
4秒前
风中的善愁完成签到,获得积分10
4秒前
NexusExplorer应助charles采纳,获得10
7秒前
Queenie发布了新的文献求助30
7秒前
英俊的铭应助ayingjiang采纳,获得10
7秒前
tuao234发布了新的文献求助70
8秒前
Cc8发布了新的文献求助10
8秒前
8秒前
saxg_hu发布了新的文献求助10
9秒前
zz完成签到,获得积分10
10秒前
11秒前
khh完成签到 ,获得积分10
11秒前
Blair完成签到 ,获得积分10
12秒前
12秒前
凯旋888发布了新的文献求助10
12秒前
迷你的从蕾完成签到 ,获得积分10
12秒前
13秒前
Bear完成签到 ,获得积分10
13秒前
smy完成签到 ,获得积分10
13秒前
一家人完成签到,获得积分10
13秒前
liuuuuu发布了新的文献求助10
13秒前
one111关注了科研通微信公众号
14秒前
李健应助文静似狮采纳,获得10
14秒前
Chow完成签到,获得积分10
15秒前
高分求助中
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
有机硅树脂及其应用 400
Psychological Warfare Operations at Lower Echelons in the Eighth Army, July 1952 – July 1953 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2425884
求助须知:如何正确求助?哪些是违规求助? 2112777
关于积分的说明 5352599
捐赠科研通 1840677
什么是DOI,文献DOI怎么找? 916077
版权声明 561363
科研通“疑难数据库(出版商)”最低求助积分说明 489945