已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic Diagnosis and Prediction of Cognitive Decline Associated with Alzheimer’s Dementia through Spontaneous Speech

推论 计算机科学 语音识别 任务(项目管理) 人工智能 交叉验证 痴呆 认知 均方误差 深度学习 认知障碍 模式识别(心理学) 机器学习 疾病 心理学 医学 统计 数学 病理 经济 神经科学 管理
作者
Ziming Liu,Lauren Proctor,Parker Collier,Xiaopeng Zhao
标识
DOI:10.1109/icsipa52582.2021.9576784
摘要

With the increasing prevalence of Alzheimer's disease (AD), it is important to develop detectable biomarkers to reliably identify AD in the early stage. Language deficit is one of the common signs that appear in the early stage of mild Alzheimer's disease. Therefore, using natural language processing and related machine learning algorithms for AD diagnosis using patients' speech recordings has drawn more attention in recent years. In this study, three approaches are proposed to extract features through speech recording in this model: (1) using fine-tuning pre-trained encoder model (BERT) for transcripts from automatic transcription, (2) hand-crafted linguistic features for transcripts from automatic transcription, and (3) selected acoustic features for denoised speech recordings. The three designed approaches are applied to three tasks: AD diagnosis, MMSE score prediction, and cognitive decline inference. The approach using BERT yields the best performance in all three challenge tasks based on cross-validation results using the training dataset. Specifically, in the AD diagnosis task, 5-fold cross-validation using encoded features based on transcripts generated from Deep Speech yields an average classification accuracy of 97.18%. In the MMSE score prediction task, 5-fold cross-validation using BERT encoded features based on transcripts generated from Deep Speech yields an average Root Mean Squared Error (RMSE) of 3.76. In the cognitive decline inference task, the leave-one-out cross-validation using BERT encoded features based on transcripts generated from Sphinx or Deep Speech yields an average classification accuracy of 100%. The analyses suggest that the combination of automatic transcription and BERT may produce a significant performance in AD related detection and prediction problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
徐biao发布了新的文献求助20
刚刚
鹿小新发布了新的文献求助10
4秒前
jyy完成签到,获得积分10
5秒前
蛙蛙完成签到,获得积分10
6秒前
华仔应助徐biao采纳,获得10
14秒前
绮烟完成签到 ,获得积分10
15秒前
16秒前
酷酷以柳完成签到,获得积分10
17秒前
Criminology34举报无风求助涉嫌违规
18秒前
月儿完成签到 ,获得积分10
26秒前
28秒前
30秒前
36秒前
阳阳完成签到,获得积分10
38秒前
moiumuio完成签到,获得积分10
39秒前
40秒前
郝誉发布了新的文献求助10
41秒前
cenghao发布了新的文献求助10
41秒前
圈哥完成签到 ,获得积分10
41秒前
香樟沐雪完成签到 ,获得积分10
42秒前
one应助Fionn采纳,获得10
43秒前
斯文败类应助科研通管家采纳,获得10
44秒前
思源应助科研通管家采纳,获得10
44秒前
无极微光应助科研通管家采纳,获得20
44秒前
科研通AI6应助科研通管家采纳,获得10
44秒前
BowieHuang应助科研通管家采纳,获得10
44秒前
44秒前
44秒前
VDC发布了新的文献求助10
47秒前
48秒前
无解应助cenghao采纳,获得100
48秒前
49秒前
陈慧钦完成签到,获得积分10
50秒前
哈哈哈完成签到,获得积分10
50秒前
明亮的代灵完成签到 ,获得积分0
51秒前
twinkle完成签到 ,获得积分10
52秒前
yun发布了新的文献求助10
52秒前
清脆的绿柳完成签到 ,获得积分10
55秒前
Jenny完成签到 ,获得积分10
55秒前
领导范儿应助哈哈哈采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590260
求助须知:如何正确求助?哪些是违规求助? 4674687
关于积分的说明 14795015
捐赠科研通 4631029
什么是DOI,文献DOI怎么找? 2532659
邀请新用户注册赠送积分活动 1501235
关于科研通互助平台的介绍 1468581