清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine Learning of ECG Waveforms to Improve Selection for Testing for Asymptomatic Left Ventricular Dysfunction

无症状的 选择(遗传算法) 医学 波形 心脏病学 内科学 人工智能 计算机科学 机器学习 电信 雷达
作者
Elizabeth Potter,Carlos H. M. Rodrigues,David B. Ascher,Walter P. Abhayaratna,Partho P. Sengupta,Thomas H. Marwick
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:14 (10): 1904-1915 被引量:36
标识
DOI:10.1016/j.jcmg.2021.04.020
摘要

Abstract Objectives The purpose of this study was to identify whether machine learning from processing of continuous wave transforms (CWTs) to provide an “energy waveform” electrocardiogram (ewECG) could be integrated with echocardiographic assessment of subclinical systolic and diastolic left ventricular dysfunction (LVD). Background Asymptomatic LVD has management implications, but routine echocardiography is not undertaken in subjects at risk of heart failure. Signal processing of the surface ECG with the use of CWT can identify abnormal myocardial relaxation. Methods EwECG and echocardiography were undertaken in 398 participants at risk of heart failure (HF). Reduced global longitudinal strain (GLS ≤16%)), diastolic abnormalities (E/e′ >15, left atrial enlargement with E/e′ >10 or impaired relaxation) or LV hypertrophy defined LVD. EwECG feature selection and supervised machine-learning by random forest (RF) classifier was undertaken with 643 CWT-derived features and the ARIC (Atherosclerosis Risk In Communities) heart failure risk score. Results The ARIC score and 18 CWT features were selected to build a RF predictive model for LVD in a training dataset (n = 287; 60% female, median age 71 [interquartile range: 68 to 74] years). Model performance was tested in an independent group (n = 111; 49% female, median age 61 years [59 to 66 years]), demonstrating 85% sensitivity and 72% specificity (area under the receiver-operating characteristic curve [AUC]: 0.83; 95% confidence interval [CI]: 0.74 to 0.92). With ARIC score removed, sensitivity was 88% and specificity, 70% (AUC: 0.78; 95% CI: 0.70 to 0.86). RF models for reduced GLS and diastolic abnormalities including similar features had sensitivities that were unsuitable for screening. Conventional candidates for LVD screening (ARIC score, N-terminal pro–B-type natriuretic peptide, and standard automated ECG analysis) had inferior discriminative ability. Integration of ewECG in screening of people at risk of HF would reduce need for echocardiography by 45% while missing 12% of LVD cases. Conclusions Machine learning applied to ewECG is a sensitive screening test for LVD, and its integration into screening of patients at risk for HF would reduce the number of echocardiograms by almost one-half.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝精灵完成签到 ,获得积分10
10秒前
zzgpku完成签到,获得积分0
31秒前
37秒前
41秒前
QCB完成签到 ,获得积分10
47秒前
ajiduo完成签到 ,获得积分10
1分钟前
liaomr完成签到 ,获得积分10
1分钟前
yindi1991完成签到 ,获得积分10
1分钟前
愤怒的念蕾完成签到,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
runtang完成签到,获得积分10
1分钟前
BowieHuang完成签到,获得积分10
1分钟前
zwzw完成签到,获得积分10
1分钟前
呵呵哒完成签到,获得积分10
1分钟前
洋芋饭饭完成签到,获得积分10
1分钟前
Syan完成签到,获得积分10
1分钟前
yzz完成签到,获得积分10
2分钟前
王jyk完成签到,获得积分10
2分钟前
prrrratt完成签到,获得积分10
2分钟前
清水完成签到,获得积分10
2分钟前
啪嗒大白球完成签到,获得积分10
2分钟前
CGBIO完成签到,获得积分10
2分钟前
文献蚂蚁完成签到,获得积分10
2分钟前
Temperature完成签到,获得积分10
2分钟前
张浩林完成签到,获得积分10
2分钟前
美满惜寒完成签到,获得积分10
2分钟前
BMG完成签到,获得积分10
2分钟前
喜喜完成签到,获得积分10
2分钟前
qq完成签到,获得积分10
2分钟前
真的OK完成签到,获得积分10
2分钟前
cityhunter7777完成签到,获得积分10
2分钟前
无花果应助CC采纳,获得10
2分钟前
ys1008完成签到,获得积分10
2分钟前
朝夕之晖完成签到,获得积分10
2分钟前
2分钟前
CC发布了新的文献求助10
2分钟前
无悔完成签到 ,获得积分10
2分钟前
2分钟前
雨jia发布了新的文献求助10
2分钟前
AmyHu完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Kolmogorov, A. N. Qualitative study of mathematical models of populations. Problems of Cybernetics, 1972, 25, 100-106 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5303565
求助须知:如何正确求助?哪些是违规求助? 4450299
关于积分的说明 13849276
捐赠科研通 4337015
什么是DOI,文献DOI怎么找? 2381233
邀请新用户注册赠送积分活动 1376219
关于科研通互助平台的介绍 1342937