Hot-carrier optoelectronic devices based on semiconductor nanowires

纳米线 材料科学 光伏 异质结 光电流 光电子学 半导体 热电子 纳米技术 固态照明 工程物理 光伏系统 电子 电气工程 物理 量子力学 工程类 发光二极管
作者
Jonatan Fast,Urs Aeberhard,Stephen Bremner,Heiner Linke
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:8 (2) 被引量:39
标识
DOI:10.1063/5.0038263
摘要

In optoelectronic devices such as solar cells and photodetectors, a portion of electron-hole pairs are generated as so called hot carriers with an excess energy that is typically lost as heat. The long standing aim to harvest this excess energy to enhance device performance has proven to be very challenging, largely due to the extremely short-lived nature of hot carriers. Efforts thus focus on increasing the hot carrier relaxation time, and on tailoring heterostructures that allow for hot-carrier extraction on short time- and length-scales. Recently, semiconductor nanowires have emerged as a promising system to achieve these aims, because they offer unique opportunities for heterostructure engineering as well as for potentially modified phononic properties that can lead to increased relaxation times. In this review we assess the current state of theory and experiments relating to hot-carrier dynamics in nanowires, with a focus on hot-carrier photovoltaics. To provide a foundation, we begin with a brief overview of the fundamental processes involved in hot-carrier relaxation, and how these can be tailored and characterized in nanowires. We then analyze the advantages offered by nanowires as a system for hot-carrier devices and review the status of proof-of-principle experiments related to hot-carrier photovoltaics. To help interpret existing experiments on photocurrent extraction in nanowires we provide modelling based on non-equilibrium Green's functions. Finally, we identify open research questions that need to be answered in order to fully evaluate the potential nanowires offer towards achieving more efficient, hot-carrier based, optoelectronic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddrose发布了新的文献求助10
1秒前
1秒前
alpv完成签到,获得积分10
1秒前
MchemG应助杨昌琪采纳,获得10
1秒前
tph完成签到 ,获得积分10
2秒前
旸羽发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
田様应助cecilia采纳,获得10
5秒前
6秒前
李爱国应助ddrose采纳,获得10
6秒前
科研通AI6应助东京芝士123采纳,获得10
7秒前
科研通AI6应助东京芝士123采纳,获得10
7秒前
10秒前
10秒前
天天快乐应助优秀的白卉采纳,获得10
10秒前
12秒前
12秒前
13秒前
哈哈哈完成签到,获得积分10
13秒前
14秒前
英勇雯发布了新的文献求助10
15秒前
共享精神应助zls0424158采纳,获得10
16秒前
杨昌琪完成签到,获得积分20
16秒前
无极微光发布了新的文献求助10
18秒前
18秒前
20秒前
思源应助ydxhh采纳,获得10
21秒前
chaowa发布了新的文献求助20
21秒前
上官若男应助jianglili采纳,获得10
22秒前
小月亮完成签到 ,获得积分10
23秒前
26秒前
李栖迟完成签到 ,获得积分10
27秒前
锦鲤完成签到,获得积分10
28秒前
28秒前
丘比特应助迅速芸遥采纳,获得10
29秒前
30秒前
30秒前
cooper完成签到 ,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
当代中国马克思主义问题意识研究 科学出版社 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4979500
求助须知:如何正确求助?哪些是违规求助? 4232187
关于积分的说明 13182437
捐赠科研通 4023165
什么是DOI,文献DOI怎么找? 2201193
邀请新用户注册赠送积分活动 1213667
关于科研通互助平台的介绍 1129839