Physics-informed Neural Network for Estimation of Lithium-Ion Battery State-of-health

可解释性 杠杆(统计) 电池(电) 计算机科学 锂离子电池 人工智能 人工神经网络 机器学习 锂(药物) 功率(物理) 物理 量子力学 医学 内分泌学
作者
Sung Wook Kim,Oh Ki Yong,Seung−Chul Lee
出处
期刊:Transactions of The Korean Society for Noise and Vibration Engineering 卷期号:31 (2): 177-184 被引量:2
标识
DOI:10.5050/ksnve.2021.31.2.177
摘要

Currently, lithium-ion batteries are becoming the most promising power source for a variety of portable electronics as well as electric vehicles. Some of the advantages that promote their widespread usage include their long battery cycle life, high durability, low self-discharge rate, and fast charge rate. However, despite their superiority in comparison with other power sources, there exists a lack of understanding regarding their battery lifetime owing to their sophisticated electrochemical actions, which cannot be sufficiently modeled and predicted using traditional physics-based models. This limitation has motivated the development of numerous data-driven approaches. However, data-driven methods also have certain limitations, such as low interpretability and inability to extrapolate well. This necessitates an alternative method that can leverage the strengths of both models while complementing their drawbacks. In this study, the state-of-health of lithium-ion batteries is estimated using a physics-informed neural network with the integration of physics in the deep learning pipeline. The results of this study indicate that the proposed model outperforms the conventional data-driven methods in RMSE and physical inconsistency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助oyyy采纳,获得10
刚刚
莫言发布了新的文献求助30
1秒前
魁梧的莹芝完成签到,获得积分10
2秒前
科研通AI5应助Polong采纳,获得10
2秒前
2秒前
共享精神应助kk采纳,获得10
2秒前
lhr发布了新的文献求助10
2秒前
怕黑又蓝完成签到,获得积分10
3秒前
打打应助魔法披风采纳,获得10
3秒前
rain完成签到,获得积分0
3秒前
酷酷一笑发布了新的文献求助10
3秒前
领导范儿应助从容不乐采纳,获得10
4秒前
知画春秋发布了新的文献求助200
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
干净绮烟关注了科研通微信公众号
5秒前
MM完成签到,获得积分10
5秒前
7秒前
song发布了新的文献求助10
7秒前
SciGPT应助随便取采纳,获得20
7秒前
钫人完成签到,获得积分10
7秒前
我是老大应助飞云采纳,获得10
8秒前
科研通AI6应助李闻闻采纳,获得10
8秒前
WGX完成签到 ,获得积分10
8秒前
Zach完成签到,获得积分10
9秒前
9秒前
尤涅若发布了新的文献求助10
9秒前
科研通AI5应助张帅采纳,获得30
9秒前
10秒前
10秒前
七七完成签到,获得积分10
11秒前
11秒前
英姑应助sworde采纳,获得10
11秒前
想毕业发布了新的文献求助10
12秒前
GXY完成签到,获得积分10
12秒前
13秒前
小二郎应助温酒随行采纳,获得10
13秒前
13秒前
龅牙苏发布了新的文献求助10
14秒前
健壮书包发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071804
求助须知:如何正确求助?哪些是违规求助? 4292378
关于积分的说明 13374385
捐赠科研通 4113281
什么是DOI,文献DOI怎么找? 2252316
邀请新用户注册赠送积分活动 1257279
关于科研通互助平台的介绍 1190064