Predicting brain function status changes in critically ill patients via Machine learning

概化理论 Boosting(机器学习) 医学 接收机工作特性 人工智能 机器学习 置信区间 梯度升压 病危 重症监护 计算机科学 重症监护医学 内科学 统计 数学 随机森林
作者
Chao Yan,Cheng Gao,Ziqi Zhang,Wencong Chen,Bradley Malin,E. Wesley Ely,Mayur B. Patel,You Chen
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:28 (11): 2412-2422 被引量:6
标识
DOI:10.1093/jamia/ocab166
摘要

In intensive care units (ICUs), a patient's brain function status can shift from a state of acute brain dysfunction (ABD) to one that is ABD-free and vice versa, which is challenging to forecast and, in turn, hampers the allocation of hospital resources. We aim to develop a machine learning model to predict next-day brain function status changes.Using multicenter prospective adult cohorts involving medical and surgical ICU patients from 2 civilian and 3 Veteran Affairs hospitals, we trained and externally validated a light gradient boosting machine to predict brain function status changes. We compared the performances of the boosting model against state-of-the-art models-an ABD predictive model and its variants. We applied Shapley additive explanations to identify influential factors to develop a compact model.There were 1026 critically ill patients without evidence of prior major dementia, or structural brain diseases, from whom 12 295 daily transitions (ABD: 5847 days; ABD-free: 6448 days) were observed. The boosting model achieved an area under the receiver-operating characteristic curve (AUROC) of 0.824 (95% confidence interval [CI], 0.821-0.827), compared with the state-of-the-art models of 0.697 (95% CI, 0.693-0.701) with P < .001. Using 13 identified top influential factors, the compact model achieved 99.4% of the boosting model on AUROC. The boosting and the compact models demonstrated high generalizability in external validation by achieving an AUROC of 0.812 (95% CI, 0.812-0.813).The inputs of the compact model are based on several simple questions that clinicians can quickly answer in practice, which demonstrates the model has direct prospective deployment potential into clinical practice, aiding in critical hospital resource allocation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jun发布了新的文献求助10
3秒前
科研孙完成签到,获得积分10
4秒前
大个应助lewis_xl采纳,获得10
5秒前
十一克拉完成签到,获得积分10
9秒前
vikoel完成签到,获得积分10
9秒前
LYDZ1完成签到,获得积分10
9秒前
11秒前
yifan92完成签到,获得积分10
12秒前
科研通AI2S应助艺响天开采纳,获得10
12秒前
高高的山兰完成签到 ,获得积分10
13秒前
二牛完成签到,获得积分10
13秒前
14秒前
想美事发布了新的文献求助10
15秒前
15秒前
田様应助谢富杰采纳,获得10
15秒前
甜蜜秋蝶发布了新的文献求助10
16秒前
俏皮连虎完成签到,获得积分10
18秒前
JFP完成签到,获得积分10
19秒前
科研通AI5应助kelly采纳,获得10
21秒前
甜蜜秋蝶完成签到,获得积分10
27秒前
华青ww完成签到,获得积分10
27秒前
陈瑞娟完成签到 ,获得积分10
30秒前
30秒前
超chao完成签到,获得积分10
30秒前
雪原白鹿完成签到,获得积分10
33秒前
33秒前
公冶愚志完成签到 ,获得积分10
36秒前
37秒前
kelly发布了新的文献求助10
38秒前
柒月小鱼完成签到 ,获得积分10
39秒前
40秒前
小老头儿完成签到,获得积分10
41秒前
夜倾心完成签到,获得积分10
41秒前
西大喜完成签到,获得积分10
44秒前
哎呦喂完成签到,获得积分10
44秒前
45秒前
奥特曼发布了新的文献求助10
47秒前
47秒前
想美事完成签到,获得积分10
48秒前
kobiy完成签到 ,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777801
求助须知:如何正确求助?哪些是违规求助? 3323321
关于积分的说明 10213817
捐赠科研通 3038554
什么是DOI,文献DOI怎么找? 1667549
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758275