Computer-aided diagnosis of prostate cancer using multiparametric MRI and clinical features: A patient-level classification framework

急诊分诊台 人工智能 接收机工作特性 前列腺癌 卷积神经网络 计算机科学 分类器(UML) 计算机辅助诊断 支持向量机 模式识别(心理学) 计算机辅助设计 医学 放射科 机器学习 癌症 内科学 急诊医学 工程制图 工程类
作者
Pritesh Mehta,Michela Antonelli,Hashim U. Ahmed,Mark Emberton,Shonit Punwani,Sébastien Ourselin
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:73: 102153-102153 被引量:33
标识
DOI:10.1016/j.media.2021.102153
摘要

Computer-aided diagnosis (CAD) of prostate cancer (PCa) using multiparametric magnetic resonance imaging (mpMRI) is actively being investigated as a means to provide clinical decision support to radiologists. Typically, these systems are trained using lesion annotations. However, lesion annotations are expensive to obtain and inadequate for characterizing certain tumor types e.g. diffuse tumors and MRI invisible tumors. In this work, we introduce a novel patient-level classification framework, denoted PCF, that is trained using patient-level labels only. In PCF, features are extracted from three-dimensional mpMRI and derived parameter maps using convolutional neural networks and subsequently, combined with clinical features by a multi-classifier support vector machine scheme. The output of PCF is a probability value that indicates whether a patient is harboring clinically significant PCa (Gleason score ≥3+4) or not. PCF achieved mean area under the receiver operating characteristic curves of 0.79 and 0.86 on the PICTURE and PROSTATEx datasets respectively, using five-fold cross-validation. Clinical evaluation over a temporally separated PICTURE dataset cohort demonstrated comparable sensitivity and specificity to an experienced radiologist. We envision PCF finding most utility as a second reader during routine diagnosis or as a triage tool to identify low-risk patients who do not require a clinical read.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助hjy1510采纳,获得100
1秒前
1秒前
2秒前
NexusExplorer应助leiqin采纳,获得10
2秒前
彭于晏应助zjz1采纳,获得10
3秒前
3秒前
4秒前
可爱的函函应助chemist007采纳,获得10
6秒前
研友_VZG7GZ应助zy采纳,获得10
6秒前
innyjiang发布了新的文献求助20
7秒前
赘婿应助科研通管家采纳,获得10
7秒前
无辜秋珊完成签到,获得积分10
8秒前
仓鼠球应助科研通管家采纳,获得20
8秒前
情怀应助科研通管家采纳,获得10
8秒前
feng1235应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
feng1235应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
9秒前
852应助科研通管家采纳,获得10
9秒前
上官若男应助杨晓柳采纳,获得100
9秒前
香蕉觅云应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
研友_VZG7GZ应助科研通管家采纳,获得10
9秒前
星辰大海应助科研通管家采纳,获得30
10秒前
null应助科研通管家采纳,获得10
10秒前
LiuJ应助科研通管家采纳,获得30
10秒前
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
小马甲应助小左采纳,获得10
11秒前
hyy完成签到 ,获得积分10
11秒前
14秒前
14秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4253256
求助须知:如何正确求助?哪些是违规求助? 3786399
关于积分的说明 11884073
捐赠科研通 3437030
什么是DOI,文献DOI怎么找? 1886281
邀请新用户注册赠送积分活动 937594
科研通“疑难数据库(出版商)”最低求助积分说明 843249