MRCG: A MRI Retrieval Framework With Convolutional and Graph Neural Networks for Secure and Private IoMT

计算机科学 卷积神经网络 图形 水准点(测量) 人工智能 医学诊断 互联网 背景(考古学) 相似性(几何) 深度学习 图像检索 模式识别(心理学) 情报检索 数据挖掘 理论计算机科学 图像(数学) 万维网 病理 古生物学 生物 地理 医学 大地测量学
作者
Zhi‐Ri Tang,Poly Z. H. Sun,Edmond Q. Wu,Chuan-Feng Wei,Dong Ming,Shengdi Chen
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 814-822 被引量:12
标识
DOI:10.1109/jbhi.2021.3130028
摘要

In the context of Industry 4.0, the medical industry is horizontally integrating the medical resources of the entire industry through the Internet of Things (IoT) and digital interconnection technologies. Speeding up the establishment of the public retrieval database of diagnosis-related historical data is a common call for the entire industry. Among them, the Magnetic Resonance Imaging (MRI) retrieval system, which is one of the key tools for secure and private the Internet of Medical Things (IoMT), is significant for patients to check their conditions and doctors to make clinical diagnoses securely and privately. Hence, this paper proposes a framework named MRCG that integrates Convolutional Neural Network (CNN) and Graph Neural Network (GNN) by incorporating the relationship between multiple gallery images in the graph structure. First, we adopt a Vgg16-based triplet network jointly trained for similarity learning and classification task. Next, a graph is constructed from the extracted features of triplet CNN where each node feature encodes a query-gallery image pair. The edge weight between nodes represents the similarity between two gallery images. Finally, a GNN with skip connections is adopted to learn on the constructed graph and predict the similarity score of each query-gallery image pair. Besides, Focal loss is also adopted while training GNN to tackle the class imbalance of the nodes. Experimental results on some benchmark datasets, including the CE-MRI dataset and a public MRI dataset from the Kaggle platform, show that the proposed MRCG can achieve 88.64% mAP and 86.59% mAP, respectively. Compared with some other state-of-the-art models, the MRCG can also outperform all the baseline models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨小羊完成签到 ,获得积分10
刚刚
满城烟沙完成签到 ,获得积分0
1秒前
2秒前
wzx发布了新的文献求助30
3秒前
5秒前
伊雪儿发布了新的文献求助10
6秒前
7秒前
雪风完成签到 ,获得积分10
8秒前
kk99123应助zkqzzz采纳,获得10
10秒前
11秒前
情怀应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
12秒前
所所应助科研通管家采纳,获得10
12秒前
12秒前
樱桃发布了新的文献求助30
12秒前
13秒前
14秒前
14秒前
拼搏诗翠完成签到 ,获得积分10
15秒前
翟zhai发布了新的文献求助10
16秒前
落寞剑成发布了新的文献求助10
17秒前
17秒前
袁钰琳完成签到 ,获得积分10
19秒前
李健应助shang采纳,获得10
20秒前
Jarvis应助碧蓝怜梦采纳,获得10
20秒前
22秒前
23秒前
Wow发布了新的文献求助10
24秒前
27秒前
英俊的铭应助称心一斩采纳,获得10
30秒前
科研通AI5应助樊小胖采纳,获得10
30秒前
32秒前
35秒前
35秒前
xingmoumou应助wzx采纳,获得10
35秒前
37秒前
坚强的又莲完成签到 ,获得积分10
37秒前
熊巴巴完成签到 ,获得积分10
38秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Eco-Friendly Skin Solutions for Natural Cosmeceuticals 500
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084017
求助须知:如何正确求助?哪些是违规求助? 3623089
关于积分的说明 11493667
捐赠科研通 3337726
什么是DOI,文献DOI怎么找? 1834963
邀请新用户注册赠送积分活动 903617
科研通“疑难数据库(出版商)”最低求助积分说明 821761