A survey of recommender systems with multi-objective optimization

推荐系统 计算机科学 新颖性 排名(信息检索) 质量(理念) 机器学习 人工智能 神学 认识论 哲学
作者
Yong Zheng,David Wang
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:474: 141-153 被引量:91
标识
DOI:10.1016/j.neucom.2021.11.041
摘要

Recommender systems have been widely applied to several domains and applications to assist decision making by recommending items tailored to user preferences. One of the popular recommendation algorithms is the model-based approach which optimizes a specific objective to improve the recommendation performance. These traditional recommendation models usually deal with a single objective, such as minimizing the prediction errors or maximizing the ranking quality of the recommendations. In recent years, there is an emerging demand for multi-objective recommender systems in which multiple objectives are considered and the recommendations can be optimized by the multi-objective optimization. For example, a recommendation model may be built by optimizing multiple metrics, such as accuracy, novelty and diversity of the recommendations. The multi-objective optimization methodologies have been well developed and applied to the area of recommender systems. In this article, we provide a comprehensive literature review of the multi-objective recommender systems. Particularly, we identify the circumstances in which a multi-objective recommender system could be useful, summarize the methodologies and evaluation approaches in these systems, point out existing challenges or weaknesses, finally provide the guidelines and suggestions for the development of multi-objective recommender systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jack发布了新的文献求助20
1秒前
1秒前
2秒前
lighta0发布了新的文献求助10
2秒前
小马甲应助苗条的摇伽采纳,获得10
3秒前
忠玉完成签到,获得积分10
3秒前
小蘑菇应助如意草丛采纳,获得10
3秒前
科研通AI2S应助pray采纳,获得10
4秒前
xingxing发布了新的文献求助10
4秒前
4秒前
豪的花花完成签到,获得积分10
4秒前
Triumph发布了新的文献求助10
5秒前
英姑应助动听的笑南采纳,获得10
5秒前
123完成签到,获得积分0
5秒前
星辰大海应助tong采纳,获得10
6秒前
kimikoi完成签到,获得积分10
7秒前
8秒前
8秒前
背后老太完成签到,获得积分20
8秒前
菜菜完成签到 ,获得积分10
9秒前
9秒前
9秒前
Bgeelyu发布了新的文献求助10
9秒前
桐桐应助犹豫绾绾采纳,获得10
10秒前
机灵道罡发布了新的文献求助10
10秒前
科研通AI2S应助survivaluu采纳,获得10
10秒前
小齐爱科研完成签到,获得积分10
11秒前
怡然芷蝶发布了新的文献求助10
11秒前
快来拾糖完成签到 ,获得积分10
11秒前
科研通AI5应助老疯智采纳,获得30
12秒前
12秒前
=.=发布了新的文献求助10
13秒前
lzq发布了新的文献求助10
13秒前
chen0815完成签到,获得积分20
13秒前
如意草丛发布了新的文献求助10
13秒前
14秒前
李爱国应助happy采纳,获得10
14秒前
科研通AI5应助酥酥鸡腿堡采纳,获得10
14秒前
14秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789121
求助须知:如何正确求助?哪些是违规求助? 3334252
关于积分的说明 10268466
捐赠科研通 3050588
什么是DOI,文献DOI怎么找? 1674046
邀请新用户注册赠送积分活动 802471
科研通“疑难数据库(出版商)”最低求助积分说明 760621