Desperate Times Call for Desperate Measures: Towards Risk-Adaptive Task Allocation

计算机科学 任务(项目管理) 机器人 背景(考古学) 风险分析(工程) 风险管理 人工智能 工程类 经济 医学 生物 古生物学 管理 系统工程
作者
Max Rudolph,Sonia Chernova,Harish Ravichandar
标识
DOI:10.1109/iros51168.2021.9635955
摘要

Multi-robot task allocation (MRTA) problems involve optimizing the allocation of robots to tasks. MRTA problems are known to be challenging when tasks require multiple robots and the team is composed of heterogeneous robots. These challenges are further exacerbated when we need to account for uncertainties encountered in the real-world. In this work, we address coalition formation in heterogeneous multi-robot teams with uncertain capabilities. We specifically focus on tasks that require coalitions to collectively satisfy certain minimum requirements. Existing approaches to uncertainty-aware task allocation either maximize expected pay-off (risk-neutral approaches) or improve worst-case or near-worst-case outcomes (risk-averse approaches). Within the context of our problem, we demonstrate the inherent limitations of unilaterally ignoring or avoiding risk and show that these approaches can in fact reduce the probability of satisfying task requirements. Inspired by models that explain foraging behaviors in animals, we develop a risk-adaptive approach to task allocation. Our approach adaptively switches between risk-averse and risk-seeking behavior in order to maximize the probability of satisfying task requirements. Comprehensive numerical experiments conclusively demonstrate that our risk-adaptive approach outperforms risk-neutral and risk-averse approaches. We also demonstrate the effectiveness of our approach using a simulated multi-robot emergency response scenario.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助LUO_Roong采纳,获得10
2秒前
香蕉觅云应助WC采纳,获得10
6秒前
万能图书馆应助NatureLee采纳,获得10
6秒前
13秒前
所所应助果果采纳,获得10
14秒前
16秒前
NatureLee发布了新的文献求助10
19秒前
19秒前
21秒前
12345678发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
24秒前
行走的猫发布了新的文献求助10
24秒前
25秒前
28秒前
29秒前
黄俊发布了新的文献求助10
30秒前
30秒前
wyao发布了新的文献求助10
30秒前
31秒前
32秒前
眯眯眼的世界应助冯同学采纳,获得10
34秒前
几钱发布了新的文献求助30
35秒前
诚心代芙完成签到 ,获得积分10
36秒前
核桃应助kl采纳,获得10
36秒前
hsp发布了新的文献求助10
37秒前
科研通AI5应助woody采纳,获得10
38秒前
40秒前
41秒前
44秒前
小二郎应助黄俊采纳,获得10
44秒前
44秒前
45秒前
12345678完成签到,获得积分10
45秒前
46秒前
仲夏发布了新的文献求助10
46秒前
完美世界应助waddles采纳,获得10
47秒前
WC发布了新的文献求助10
48秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3845043
求助须知:如何正确求助?哪些是违规求助? 3387239
关于积分的说明 10548500
捐赠科研通 3107967
什么是DOI,文献DOI怎么找? 1712311
邀请新用户注册赠送积分活动 824304
科研通“疑难数据库(出版商)”最低求助积分说明 774706