Adversarial Transfer Learning‐Based Hybrid Recurrent Network for Air Quality Prediction

对抗制 学习迁移 计算机科学 人工智能 机器学习 质量(理念) 认识论 哲学
作者
Yanqi Hao,Chuan Luo,Tianrui Li,Junbo Zhang,Hongmei Chen
出处
期刊:International Journal of Intelligent Systems [Wiley]
卷期号:2025 (1)
标识
DOI:10.1155/int/6014262
摘要

Air quality modeling and forecasting has become a key problem in environmental protection. The existing prediction models typically require large‐scale and high‐quality historical data to achieve better performance. However, insufficient data volume and significant differences between data distribution across different regions will definitely reduce the effectiveness of the model reuse. To address the above issues, we propose a novel hybrid recurrent network based on domain adversarial transfer to achieve a stronger generalization ability when training air quality data from multisource domains. The proposed model mainly consists of three fundamental modules, i.e., feature extractor, regression predictor, and domain classifier. One‐dimensional convolutional neural networks (1D‐CNNs) are used to extract temporal feature of data from source and target stations. Bi‐directional gated recurrent unit (bi‐GRU) and bi‐directional long short‐term memory (bi‐LSTM) are utilized to learn temporal dependencies pattern of multivariate time series data. Two adversarial transfer strategies are employed to ensure that our model is capable of finding domain invariant representations automatically. Experiments with different number of source domains are conducted to demonstrate the effectiveness of the proposed domain transfer strategies. The experimental results also show that our composite model has superior performance for forecasting air quality in various regions. As further evidence, the adversarial training method could promote the positive transfer and alleviate the negative effect of irrelevant source data. Besides, our model exhibits preferable generalization capability as more robust prediction results are achieved on both unseen target domains and original source domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
又又发布了新的文献求助10
刚刚
刚刚
2秒前
Nico应助daladidala采纳,获得10
3秒前
4秒前
苏幕完成签到,获得积分10
4秒前
4秒前
zhaxiao完成签到,获得积分10
5秒前
Victoria发布了新的文献求助10
5秒前
6秒前
天天快乐应助N型半导体采纳,获得10
6秒前
香蕉觅云应助小魏采纳,获得10
6秒前
康舟发布了新的文献求助10
7秒前
无花果应助故意的鸿涛采纳,获得10
7秒前
7秒前
Milo3691完成签到,获得积分20
7秒前
book应助科研通管家采纳,获得10
8秒前
water应助科研通管家采纳,获得20
8秒前
哈基米德应助科研通管家采纳,获得50
8秒前
CipherSage应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
9秒前
water应助科研通管家采纳,获得10
9秒前
ED应助科研通管家采纳,获得10
9秒前
Liufgui应助科研通管家采纳,获得30
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得30
9秒前
Owen应助科研通管家采纳,获得10
9秒前
七月半发布了新的文献求助10
9秒前
打打应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
9秒前
yar应助科研通管家采纳,获得10
10秒前
AlexLee发布了新的文献求助10
10秒前
111111111发布了新的文献求助10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4110558
求助须知:如何正确求助?哪些是违规求助? 3648998
关于积分的说明 11557674
捐赠科研通 3354198
什么是DOI,文献DOI怎么找? 1842816
邀请新用户注册赠送积分活动 909033
科研通“疑难数据库(出版商)”最低求助积分说明 825912