亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Physics-informed learning in artificial electromagnetic materials

物理 认知科学 人工智能 数学教育 计算机科学 心理学
作者
Yang Deng,Kebin Fan,Biaobing Jin,Jordan M. Malof,Willie J. Padilla
出处
期刊:Applied physics reviews [American Institute of Physics]
卷期号:12 (1)
标识
DOI:10.1063/5.0232675
摘要

The advent of artificial intelligence—deep neural networks (DNNs) in particular—has transformed traditional research methods across many disciplines. DNNs are data driven systems that use large quantities of data to learn patterns that are fundamental to a process. In the realm of artificial electromagnetic materials (AEMs), a common goal is to discover the connection between the AEM's geometry and material properties to predict the resulting scattered electromagnetic fields. To achieve this goal, DNNs usually utilize computational electromagnetic simulations to act as ground truth data for the training process, and numerous successful results have been shown. Although DNNs have many demonstrated successes, they are limited by their requirement for large quantities of data and their lack of interpretability. The latter results because DNNs are black-box models, and therefore, it is unknown how or why they work. A promising approach which may help to mitigate the aforementioned limitations is to use physics to guide the development and operation of DNNs. Indeed, this physics-informed learning (PHIL) approach has seen rapid development in the last few years with some success in addressing limitations of conventional DNNs. We overview the field of PHIL and discuss the benefits of incorporating knowledge into the deep learning process and introduce a taxonomy that enables us to categorize various types of approaches. We also summarize deep learning principles which are critical to PHIL understanding and the Appendix covers some of the physics of AEMs. A few specific PHIL works are highlighted and serve as examples of various approaches. Finally, we provide an outlook detailing where the field is currently and what we can expect in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jyy应助科研通管家采纳,获得10
6秒前
jyy应助科研通管家采纳,获得10
6秒前
NexusExplorer应助白云采纳,获得10
10秒前
量子星尘发布了新的文献求助10
15秒前
章铭-111完成签到 ,获得积分10
17秒前
19秒前
包容如曼完成签到,获得积分10
20秒前
22秒前
25秒前
英俊鼠标发布了新的文献求助10
28秒前
30秒前
30秒前
34秒前
包容如曼关注了科研通微信公众号
36秒前
36秒前
Akim应助Leonfun123采纳,获得10
37秒前
英俊鼠标完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
Bighen完成签到 ,获得积分0
40秒前
42秒前
高贵逍遥完成签到 ,获得积分10
46秒前
淡然台灯关注了科研通微信公众号
47秒前
Leonfun123发布了新的文献求助10
48秒前
57秒前
58秒前
58秒前
所所应助DJHKFD采纳,获得10
59秒前
猜不猜不完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ET发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zyx给zyx的求助进行了留言
1分钟前
13656479046发布了新的文献求助10
1分钟前
1分钟前
糖歌吃瘦发布了新的文献求助10
1分钟前
wyy发布了新的文献求助20
1分钟前
包容如曼发布了新的文献求助10
1分钟前
桐桐应助没有昵称采纳,获得10
1分钟前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
Structural Equation Modeling of Multiple Rater Data 700
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3885703
求助须知:如何正确求助?哪些是违规求助? 3427807
关于积分的说明 10756988
捐赠科研通 3152707
什么是DOI,文献DOI怎么找? 1740539
邀请新用户注册赠送积分活动 840289
科研通“疑难数据库(出版商)”最低求助积分说明 785280