Toward Unified 3D Object Detection via Algorithm and Data Unification

统一 计算机科学 人工智能 算法 对象(语法) 目标检测 模式识别(心理学) 计算机视觉 程序设计语言
作者
Zhuoling Li,Xiaogang Xu,Ser-Nam Lim,Hengshuang Zhao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:47 (9): 7960-7975
标识
DOI:10.1109/tpami.2025.3574363
摘要

Realizing unified 3D object detection, including both indoor and outdoor scenes, holds great importance in applications like robot navigation. However, involving various scenarios of data to train models poses challenges due to their significantly distinct characteristics, e.g., diverse geometry properties and heterogeneous domain distributions. In this work, we propose to address the challenges from two perspectives, the algorithm perspective and data perspective. In terms of the algorithm perspective, we first build a monocular 3D object detector based on the bird's-eye-view (BEV) detection paradigm, where the explicit feature projection is beneficial to addressing the geometry learning ambiguity. In this detector, we split the classical BEV detection architecture into two stages and propose an uneven BEV grid design to handle the convergence instability caused by geometry difference between scenarios. Besides, we develop a sparse BEV feature projection strategy to reduce the computational cost and a unified domain alignment method to handle heterogeneous domains. From the data perspective, we propose to incorporate depth information to improve training robustness. Specifically, we build the first unified multi-modal 3D object detection benchmark MM-Omni3D and extend the aforementioned monocular detector to its multi-modal version, which is the first unified multi-modal 3D object detector. We name the designed monocular and multi-modal detectors as UniMODE and MM-UniMODE, respectively. The experimental results reveal several insightful findings highlighting the benefits of multi-modal data and confirm the effectiveness of all the proposed strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助超帅的荷花采纳,获得10
1秒前
Lorna完成签到,获得积分10
1秒前
1秒前
小木鱼完成签到,获得积分10
1秒前
1秒前
赵浩楠发布了新的文献求助10
2秒前
Felix完成签到,获得积分10
3秒前
3秒前
CipherSage应助Feng采纳,获得10
3秒前
闪闪完成签到,获得积分10
4秒前
4秒前
寒冷的绿蕊完成签到,获得积分10
5秒前
Dailei发布了新的文献求助10
5秒前
li完成签到,获得积分10
5秒前
yolo完成签到,获得积分10
6秒前
所所应助FCL采纳,获得10
6秒前
小左完成签到,获得积分10
6秒前
果果完成签到,获得积分10
6秒前
王王完成签到 ,获得积分10
6秒前
夏枯草完成签到,获得积分10
6秒前
深情安青应助欧云齐采纳,获得10
7秒前
要强的元枫完成签到,获得积分10
7秒前
香蕉觅云应助初次见面采纳,获得10
8秒前
飞翔的发布了新的文献求助10
8秒前
云枝发布了新的文献求助10
9秒前
peaunt完成签到,获得积分10
9秒前
kvning发布了新的文献求助10
9秒前
9秒前
小蘑菇应助朱紫祎采纳,获得10
10秒前
10秒前
10秒前
深情凡灵完成签到,获得积分10
10秒前
思源应助Anlix采纳,获得10
10秒前
11秒前
Dailei完成签到,获得积分10
11秒前
123完成签到,获得积分10
11秒前
感性的大楚完成签到 ,获得积分10
11秒前
11秒前
科研通AI6应助遇见采纳,获得10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5396591
求助须知:如何正确求助?哪些是违规求助? 4516960
关于积分的说明 14061977
捐赠科研通 4428852
什么是DOI,文献DOI怎么找? 2432178
邀请新用户注册赠送积分活动 1424542
关于科研通互助平台的介绍 1403644