X2‐PEC: A Neural Network Model Based on Atomic Pair Energy Corrections

一般化 哈密顿量(控制论) 人工神经网络 密度泛函理论 计算机科学 计算化学 化学 统计物理学 物理 人工智能 数学 数学优化 数学分析
作者
Minghong Jiang,Zhanfeng Wang,Yicheng Chen,Wenhao Zhang,Zhenyu Zhu,Wenjie Yan,Jianming Wu,Xin Xu
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:46 (8): e70081-e70081
标识
DOI:10.1002/jcc.70081
摘要

ABSTRACT With the development of artificial neural networks (ANNs), its applications in chemistry have become increasingly widespread, especially in the prediction of various molecular properties. This work introduces the X2‐PEC method, that is, the second generalization of the X1 series of ANN methods developed in our group, utilizing pair energy correction (PEC). The essence of the X2 model lies in its feature vector construction, using overlap integrals and core Hamiltonian integrals to incorporate physical and chemical information into the feature vectors to describe atomic interactions. It aims to enhance the accuracy of low‐rung density functional theory (DFT) calculations, such as those from the widely used BLYP/6‐31G(d) or B3LYP/6‐31G(2df,p) methods, to the level of top‐rung DFT calculations, such as those from the highly accurate doubly hybrid XYGJ‐OS/GTLarge method. Trained on the QM9 dataset, X2‐PEC excels in predicting the atomization energies of isomers such as C 6 H 8 and C 4 H 4 N 2 O with varying bonding structures. The performance of the X2‐PEC model on standard enthalpies of formation for datasets such as G2‐HCNOF, PSH36, ALKANE28, BIGMOL20, and HEDM45, as well as a HCNOF subset of BH9 for reaction barriers, is equally commendable, demonstrating its good generalization ability and predictive accuracy, as well as its potential for further development to achieve greater accuracy. These outcomes highlight the practical significance of the X2‐PEC model in elevating the results from lower‐rung DFT calculations to the level of higher‐rung DFT calculations through deep learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
发发完成签到 ,获得积分10
1秒前
1秒前
天元神尊发布了新的文献求助10
1秒前
dabai完成签到 ,获得积分10
1秒前
吴宵完成签到,获得积分10
2秒前
脑洞疼应助大气早晨采纳,获得10
3秒前
空空完成签到,获得积分10
5秒前
TBLS完成签到,获得积分20
5秒前
alvin完成签到,获得积分10
6秒前
6秒前
火星上立果完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
12秒前
喝水吗完成签到,获得积分10
15秒前
MM发布了新的文献求助10
16秒前
17秒前
突突突完成签到,获得积分10
19秒前
墨白白发布了新的文献求助10
19秒前
19秒前
20秒前
yyc完成签到,获得积分10
21秒前
21秒前
cherrydog完成签到 ,获得积分10
23秒前
科研通AI6应助仇文琪采纳,获得10
25秒前
728发布了新的文献求助10
25秒前
淡定幻莲发布了新的文献求助10
26秒前
TBLS发布了新的文献求助30
26秒前
31秒前
31秒前
桐桐应助和谐的清采纳,获得10
33秒前
34秒前
阿良发布了新的文献求助10
34秒前
彭于晏应助Jane采纳,获得30
34秒前
Longfei发布了新的文献求助10
36秒前
tk完成签到,获得积分10
36秒前
gqp完成签到,获得积分10
37秒前
38秒前
烟花应助Longfei采纳,获得10
40秒前
精明的如风完成签到,获得积分10
41秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457707
求助须知:如何正确求助?哪些是违规求助? 4563953
关于积分的说明 14292841
捐赠科研通 4488749
什么是DOI,文献DOI怎么找? 2458678
邀请新用户注册赠送积分活动 1448647
关于科研通互助平台的介绍 1424343