已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Potential Inhibitors of SARS-CoV-2 Developed through Machine Learning, Molecular Docking, and MD Simulation

对接(动物) 冠状病毒 虚拟筛选 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 计算生物学 蛋白质数据库 码头 2019年冠状病毒病(COVID-19) 药效团 计算机科学 生物信息学 生物 医学 生物化学 传染病(医学专业) 疾病 病理 护理部
作者
Arshiya Khan,Anushka Bhrdwaj,Khushboo Sharma,Ravali Arugonda,Navpreet Kaur,Rinku Chaudhary,Uzma Shaheen,Umesh Panwar,V. Natchimuthu,Abhishek Kumar,Taniya Dey,Aravind Panicker,Leena Prajapati,Nhattuketty Krishnan Shainy,Muhammed Marunnan Sahila,Francisco Jaime Bezerra Mendonça,Tajamul Hussain,Salman Alrokayan,Anuraj Nayarisseri
出处
期刊:Medicinal Chemistry [Bentham Science Publishers]
卷期号:21
标识
DOI:10.2174/0115734064370188250527043536
摘要

Background: The advent of Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), the etiological agent of the Coronavirus Disease 2019 (COVID-19) pandemic, has impacted physical and mental health worldwide. The lack of effective antiviral drugs necessitates a robust therapeutic approach to develop anti-SARS-CoV-2 drugs. Various investigations have recognized ACE2 as the primary receptor of SARS-CoV-2, and this amalgamation of ACE2 with the spike protein of the coronavirus is paramount for viral entry into the host cells and inducing infection. Consequently, restricting the virus';s accessibility to ACE2 offers an alternative therapeutic approach to averting this illness. Objective: The study aimed to identify potent inhibitors with enhanced affinity for the ACE2 protein and validate their stability and efficacy against established inhibitors via molecular docking, machine learning, and MD simulations. Methodology: 202 ACE2 inhibitors (PDB ID and 6LZG), comprising repurposed antiviral compounds and specific ACE2 inhibitors, were selected for molecular docking. The two most effective compounds obtained from docking were further analyzed using machine learning to identify potential compounds with enhanced ACE2-binding affinity. To refine the dataset, molecular decoys were generated through the Database of Useful Decoys: Enhanced (DUD-E) server, and Singular Value Decomposition (SVD) was applied for data preprocessing. The Tree-based Pipeline Optimization Tool (TPOT) was then utilized to optimize the machine learning pipeline. The most promising ML-predicted compounds were re-evaluated through docking and subjected to Molecular Dynamics (MD) simulations to evaluate their structural stability and interactions with ACE2. Finally, these compounds were evaluated against the top two pre-established inhibitors using various computational tools. Results: The two best pre-established inhibitors were identified as Birinapant and Elbasvir, while the best machine-learning-predicted compounds were PubChem ID: 23658468 and PubChem ID: 117637105. Pharmacophore studies were conducted on the most effective machine-learning-predicted compounds, followed by a comparative ADME/T analysis between the best ML-screened and pre-established inhibitors. The results indicated that the top ML compound (PubChem ID: 23658468) demonstrated favorable BBB permeability and a high HIA index, highlighting its potential for therapeutic applications. The ML-screened ligand demonstrated structural stability with an RMSD (0.24 nm) and greater global stability (Rg: 2.08 nm) than Birinapant. Hydrogen bonding interactions further validated their strong binding affinity. MM/PBSA analysis confirmed the ML-screened compound';s stronger binding affinity, with a binding free energy of - 132.90 kcal/mol, indicating enhanced stability in complex formation. Conclusion: The results emphasize the efficacy of integrating molecular docking, machine learning, and molecular dynamics simulations in facilitating the rapid identification of novel inhibitors. PubChem ID: 23658468 demonstrates robust binding affinity to ACE2 and favorable pharmacokinetic properties, establishing it as a promising candidate for further investigation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研王完成签到 ,获得积分10
3秒前
4秒前
如意书桃完成签到 ,获得积分10
6秒前
三三发布了新的文献求助10
7秒前
浮浮世世应助GUET采纳,获得30
9秒前
天天完成签到 ,获得积分10
11秒前
再学一分钟完成签到,获得积分10
11秒前
斯文跳跳糖完成签到 ,获得积分10
11秒前
zyq发布了新的文献求助150
14秒前
田様应助谦让的小姜采纳,获得10
17秒前
CipherSage应助斯文跳跳糖采纳,获得30
18秒前
Yuyukoaii完成签到,获得积分10
18秒前
Kathy发布了新的文献求助10
19秒前
28秒前
提拉米草完成签到 ,获得积分10
28秒前
诺nuo完成签到,获得积分10
30秒前
31秒前
万能图书馆应助南淮采纳,获得10
31秒前
32秒前
Rooooi发布了新的文献求助10
32秒前
打打应助兴奋黑米采纳,获得10
33秒前
朴素海亦完成签到 ,获得积分10
35秒前
科研通AI6应助诺nuo采纳,获得10
35秒前
壹壹完成签到 ,获得积分10
35秒前
无心的怜南完成签到,获得积分10
35秒前
Ander完成签到 ,获得积分10
35秒前
36秒前
xiuxiu完成签到 ,获得积分10
43秒前
无止完成签到,获得积分10
47秒前
50秒前
qingfengnai完成签到,获得积分10
50秒前
55秒前
Orange应助Pavel采纳,获得10
55秒前
南山完成签到 ,获得积分10
58秒前
58秒前
慕玖淇完成签到 ,获得积分10
59秒前
Jackie应助科研通管家采纳,获得10
59秒前
NexusExplorer应助科研通管家采纳,获得10
59秒前
科研通AI6应助科研通管家采纳,获得10
59秒前
小二郎应助科研通管家采纳,获得10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534114
求助须知:如何正确求助?哪些是违规求助? 4622235
关于积分的说明 14582010
捐赠科研通 4562343
什么是DOI,文献DOI怎么找? 2500106
邀请新用户注册赠送积分活动 1479665
关于科研通互助平台的介绍 1450782