类金属
硼
光合作用
氧还原
化学
氧气
还原(数学)
氧化还原
无机化学
环境化学
光化学
电化学
有机化学
金属
生物化学
物理化学
数学
几何学
电极
作者
Jian Zhou,Yanfei Mu,Meng Qiao,Meng‐Ran Zhang,Su‐Xian Yuan,Min Zhang,Tong‐Bu Lu
标识
DOI:10.1002/ange.202506963
摘要
The indirect two‐step two‐electron oxygen reduction reaction (2e− ORR) dominates photocatalytic H2O2 synthesis but suffers form sluggish kinetics, •O2−‐induced catalyst degradation, and spatiotemporal carrier‐intermediate mismatch. Herein, we pioneer a metal‐metalloid dual‐site strategy to unlock the direct one‐step 2e− ORR pathway, demonstrated through boron‐engineered Zn3In2S6 (B‐ZnInS) photocatalyst with In‐B dual‐active sites. The In‐B dual‐site configuration creates a charge‐balanced electron reservoir by charge complementation, which achieves moderate O2 adsorption via bidentate coordination and dual‐channel electron transfer, preventing excessive O−O bond activation. Simultaneously, boron doping induces lattice polarization to establish a built‐in electric field, quintupling photogenerated carrier lifetimes versus pristine ZnInS. These synergies redirect the O2 activation pathway from indirect to direct 2e− ORR process, delivering an exceptional H2O2 production rate of 3121 μmol g−1 h−1 in pure water under simulated AM 1.5G illumination (100 mW cm−2)—an 11‐fold enhancement over ZnInS. The system achieves an unprecedented apparent quantum yield of 49.8% at 365 nm for H2O2 photosynthesis among inorganic semiconducting photocatalysts, and can continuously produce medical‐grade H2O2 (3 wt%). This work provides insights for designing efficient H2O2 photocatalysts and beyond.
科研通智能强力驱动
Strongly Powered by AbleSci AI