GaN-on-diamond technology for next-generation power devices

钻石 工程物理 光电子学 材料科学 电气工程 计算机科学 工程类 冶金
作者
Kangkai Fan,Jiachang Guo,Zihao Huang,Yu Xu,Zengli Huang,Wei Xu,Qi Wang,Qiubao Lin,Xiaohua Li,Hezhou Liu,Xinke Liu
标识
DOI:10.1007/s44275-024-00022-z
摘要

Abstract Gallium nitride (GaN)-based power devices have attracted significant attention due to their superior performance in high-frequency and high-power applications. However, the high-power density in these devices often induces severe self-heating effects (SHEs), which degrade their performance and reliability. Traditional thermal management solutions have struggled to efficiently dissipate heat, thereby leading to suboptimal real-world performance compared with theoretical predictions. To address this challenge, diamond has emerged as a highly promising substrate material for GaN devices, primarily due to its exceptional thermal conductivity and mechanical stability. GaN-on-diamond technology has a thermal conductivity of 2 200 W/m/K and it significantly enhances heat dissipation at the chip level. In this review, we provide a systematic overview of the two main integration methods for GaN and diamond: bonding and epitaxial growth techniques. Moreover, we elaborate on the impact of thermal boundary resistance (TBR) at the interface. According to the diffuse mismatch model, the TBR of GaN-on-diamond interfaces can be as low as 3 m 2 K/GW, which is markedly superior to silicon carbide substrates. In addition, novel techniques such as patterned growth, nanocrystalline diamond (NCD) capping films, and diamond passivation layers have been explored to further enhance thermal management capabilities. We also consider the roles of intermediate dielectric layers in reducing TBR, promoting diamond nucleation, and protecting the GaN layer. Thus, in this review, we summarize the current state of research into GaN-on-diamond technology, highlighting its revolutionary impact on thermal management for power devices and providing new pathways for the development of high-power GaN devices in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI2S应助KD采纳,获得10
1秒前
小天发布了新的文献求助10
1秒前
Cactus完成签到,获得积分10
4秒前
stephy完成签到,获得积分10
4秒前
bright_xu完成签到,获得积分10
5秒前
MaChent发布了新的文献求助10
7秒前
小天完成签到,获得积分10
8秒前
情怀应助大头老婆采纳,获得10
9秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
黎li完成签到 ,获得积分10
12秒前
fengchuanmu完成签到,获得积分10
12秒前
林昊完成签到,获得积分10
12秒前
上官若男应助MaChent采纳,获得10
14秒前
19079405053发布了新的文献求助10
15秒前
Xiaoqiu完成签到 ,获得积分10
15秒前
chcmuer发布了新的文献求助10
16秒前
林昊发布了新的文献求助10
17秒前
京末完成签到,获得积分10
18秒前
我是老大应助满_1999采纳,获得10
20秒前
潇洒的小鸽子完成签到 ,获得积分10
20秒前
整齐煜城完成签到,获得积分20
20秒前
21秒前
24秒前
25秒前
生如夏花完成签到 ,获得积分10
25秒前
俊逸碧玉发布了新的文献求助10
26秒前
卓诗云发布了新的文献求助10
27秒前
28秒前
fengchuanmu发布了新的文献求助10
28秒前
28秒前
29秒前
我是老大应助卷儿采纳,获得10
29秒前
29秒前
yyg应助19079405053采纳,获得10
30秒前
GGGrigor完成签到,获得积分10
32秒前
纸纸发布了新的文献求助100
32秒前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中国翻译词典 1000
Astrochemistry 1000
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3874989
求助须知:如何正确求助?哪些是违规求助? 3417447
关于积分的说明 10703422
捐赠科研通 3141802
什么是DOI,文献DOI怎么找? 1733606
邀请新用户注册赠送积分活动 836096
科研通“疑难数据库(出版商)”最低求助积分说明 782355