Phenol[4]arenes: Excellent Macrocyclic Precursors for Constructing Chiral Porous Organic Cages

化学 苯酚 有机化学 多孔性 杯芳烃 分子
作者
Fenglei Qiu,Xinting Zhang,Wenjing Wang,Kongzhao Su,Daqiang Yuan
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:147 (10): 8500-8512 被引量:12
标识
DOI:10.1021/jacs.4c16508
摘要

The development of new chiral building blocks for constructing complex chiral architectures, such as macrocycles and cages, is both crucial and challenging. Although concave-shaped calixarenes have been established as versatile building blocks for the synthesis of cage compounds, there are no reports on cages constructed from chiral calix[4]arene derivatives. Herein, we present a straightforward and effective method for gram-scale synthesis of a new member of chiral calix[4]arene macrocycle enantiomers, namely, phenol[4]arene (PC[4]A). As a proof of concept, we functionalized these enantiomers into tetraformylphenol[4]arene (PC[4]ACHO) derivatives via the Duff reaction to construct chiral porous organic cages (CPOCs) using polyamine synthons. Specifically, we employ two fluorescent amine synthons, bis(4-aminophenyl)phenylamine and tris(4-aminophenyl)amine, to assemble with PC[4]ACHO enantiomers, resulting in [2 + 4] lantern-shaped and [6 + 8] truncated octahedral CPOCs, respectively. These structures have been unambiguously characterized by single-crystal X-ray diffraction and circular dichroism (CD) spectroscopy. Notably, the [6 + 8] truncated CPOCs exhibit internal diameters of approximately 3.1 nm, a cavity volume of around 5300 Å3, and high specific surface areas of up to 1300 m2 g-1 after desolvation, making them among the largest CPOCs reported. Additionally, investigations into their chiral sensing performance demonstrate that these PC[4]A-based CPOCs enable the enantioselective recognition of amino acids and their derivatives. This work strongly suggests that PC[4]A can serve as an excellent building block for the rational design of chiral materials with practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
金金发布了新的文献求助30
2秒前
传奇3应助热热采纳,获得10
2秒前
Yuksn发布了新的文献求助10
3秒前
3秒前
姜姜完成签到,获得积分10
4秒前
4秒前
4秒前
bkagyin应助LLP采纳,获得10
4秒前
lyx完成签到,获得积分10
4秒前
科研通AI6应助朴素的滑板采纳,获得10
5秒前
顺顺发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助20
6秒前
零零完成签到 ,获得积分10
6秒前
Ann完成签到,获得积分10
6秒前
STNZEN完成签到,获得积分10
6秒前
7秒前
苗润卓发布了新的文献求助10
7秒前
衫青发布了新的文献求助10
8秒前
10秒前
超帅鸣凤发布了新的文献求助10
10秒前
10秒前
Hello应助QIN采纳,获得10
11秒前
西西发布了新的文献求助10
12秒前
12秒前
张楚岚发布了新的文献求助10
13秒前
shuaxin456完成签到,获得积分10
13秒前
阮敏敏完成签到,获得积分10
14秒前
Owen应助小羊采纳,获得10
14秒前
我是老大应助快乐妙菡采纳,获得10
14秒前
15秒前
15秒前
Beryll完成签到 ,获得积分10
15秒前
16秒前
33发布了新的文献求助10
16秒前
16秒前
赫幼蓉完成签到 ,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
vict完成签到,获得积分10
19秒前
虚幻的冰露发布了新的文献求助100
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
复杂系统建模与弹性模型研究 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5486300
求助须知:如何正确求助?哪些是违规求助? 4585866
关于积分的说明 14406906
捐赠科研通 4516329
什么是DOI,文献DOI怎么找? 2474749
邀请新用户注册赠送积分活动 1460682
关于科研通互助平台的介绍 1433773