Deep learning for cross-domain data fusion in urban computing: Taxonomy, advances, and outlook

计算机科学 城市计算 深度学习 数据科学 模式 领域(数学) 领域(数学分析) 人工智能 城市规划 大数据 传感器融合 分类学(生物学) 分类 机器学习 数据挖掘 工程类 生物 社会科学 数学分析 社会学 土木工程 植物 纯数学 数学
作者
Xingchen Zou,Yibo Yan,Xixuan Hao,Yuehong Hu,Haomin Wen,Erdong Liu,Junbo Zhang,Yong Li,Tianrui Li,Yu Zheng,Yuxuan Liang
出处
期刊:Information Fusion [Elsevier]
卷期号:113: 102606-102606 被引量:38
标识
DOI:10.1016/j.inffus.2024.102606
摘要

As cities continue to burgeon, Urban Computing emerges as a pivotal discipline for sustainable development by harnessing the power of cross-domain data fusion from diverse sources (e.g., geographical, traffic, social media, and environmental data) and modalities (e.g., spatio-temporal, visual, and textual modalities). Recently, we are witnessing a rising trend that utilizes various deep-learning methods to facilitate cross-domain data fusion in smart cities. To this end, we propose the first survey that systematically reviews the latest advancements in deep learning-based data fusion methods tailored for urban computing. Specifically, we first delve into data perspective to comprehend the role of each modality and data source. Secondly, we classify the methodology into four primary categories: feature-based, alignment-based, contrast-based, and generation-based fusion methods. Thirdly, we further categorize multi-modal urban applications into seven types: urban planning, transportation, economy, public safety, society, environment, and energy. Compared with previous surveys, we focus more on the synergy of deep learning methods with urban computing applications. Furthermore, we shed light on the interplay between Large Language Models (LLMs) and urban computing, postulating future research directions that could revolutionize the field. We firmly believe that the taxonomy, progress, and prospects delineated in our survey stand poised to significantly enrich the research community. The summary of the comprehensive and up-to-date paper list can be found at https://github.com/yoshall/Awesome-Multimodal-Urban-Computing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI6应助朝闻道采纳,获得10
1秒前
脑洞疼应助songhan采纳,获得10
2秒前
2秒前
3秒前
郢都小镇发布了新的文献求助30
4秒前
4秒前
6秒前
6a完成签到 ,获得积分10
6秒前
6秒前
vvei完成签到,获得积分10
6秒前
6秒前
7秒前
8秒前
8秒前
wowowww发布了新的文献求助10
9秒前
称心山柏发布了新的文献求助10
11秒前
CodeCraft应助科研通管家采纳,获得10
11秒前
wr08281完成签到,获得积分10
11秒前
田様应助科研通管家采纳,获得10
11秒前
Criminology34应助科研通管家采纳,获得10
11秒前
晚安发布了新的文献求助10
11秒前
FashionBoy应助qingxuan采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
12秒前
浮游应助科研通管家采纳,获得10
12秒前
wxyshare应助科研通管家采纳,获得10
12秒前
12秒前
大模型应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得10
12秒前
酷波er应助科研通管家采纳,获得10
12秒前
Criminology34应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
CipherSage应助科研通管家采纳,获得10
13秒前
烟花应助科研通管家采纳,获得10
13秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5344456
求助须知:如何正确求助?哪些是违规求助? 4479697
关于积分的说明 13944205
捐赠科研通 4376849
什么是DOI,文献DOI怎么找? 2404949
邀请新用户注册赠送积分活动 1397495
关于科研通互助平台的介绍 1369791