DenseKoopman: A Plug-and-Play Framework for Dense Pedestrian Trajectory Prediction

弹道 行人 计算机科学 插件 即插即用 人工智能 运输工程 工程类 物理 程序设计语言 操作系统 天文
作者
Xianbang Li,Yilong Ren,Han Jiang,Haiyang Yu,Yanlei Cui,Liang Xu
标识
DOI:10.24963/ijcai.2024/113
摘要

Pedestrian trajectory prediction has emerged as a core component of human-robot interaction and autonomous driving. Fast and accurate prediction of surrounding pedestrians contributes to making decisions and improves safety and efficiency. However, pedestrians’ future trajectories will interact with their surrounding traffic participants. As the density of pedestrians increases, the complexity of such interactions also increases significantly, leading to an inevitable decrease in the accuracy of pedestrian trajectory prediction. To address this issue, we propose DenseKoopman, a plug-and-play framework for dense pedestrian trajectory prediction. Specifically, we introduce the Koopman operator theory to find an embedding space for a global linear approximation of a nonlinear pedestrian motion system. By encoding historical trajectories as linear state embeddings in the Koopman space, we transforms nonlinear trajectory data for pedestrians in dense scenes. This linearized representation greatly reduces the complexity of dense pedestrian trajectory prediction. Extensive experiments on pedestrian trajectory prediction benchmarks demonstrate the superiority of the proposed framework. We also conducted an analysis of the data transformation to explore how our DenseKoopman framework works with each validation method and uncovers motion patterns that may be hidden within the trajectory data. Code is available at https://github.com/lixianbang/DenseKoopman.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黄志广发布了新的文献求助10
1秒前
Vesper发布了新的文献求助10
1秒前
2秒前
研友_VZG7GZ应助wwwww采纳,获得10
2秒前
YQ发布了新的文献求助10
3秒前
迅速的大山完成签到,获得积分10
3秒前
完美世界应助bill采纳,获得10
3秒前
朴素的招牌完成签到 ,获得积分10
4秒前
4秒前
PAPA完成签到,获得积分10
4秒前
土豆很好吃完成签到,获得积分20
4秒前
4秒前
小路完成签到 ,获得积分10
5秒前
SH发布了新的文献求助10
5秒前
Schiller发布了新的文献求助10
5秒前
风中忆枫完成签到,获得积分10
5秒前
羊咩咩完成签到,获得积分20
5秒前
6秒前
6秒前
6秒前
6秒前
lsy发布了新的文献求助10
6秒前
Lucas应助一目十行采纳,获得10
6秒前
糖布里部发布了新的文献求助10
6秒前
gong完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
小二郎应助axn采纳,获得10
7秒前
浩多多发布了新的文献求助200
7秒前
ac发布了新的文献求助50
7秒前
8秒前
榴莲受众完成签到,获得积分10
9秒前
9秒前
wwwww应助文件撤销了驳回
9秒前
会撒娇的定帮完成签到,获得积分10
9秒前
烟花应助Schiller采纳,获得10
10秒前
MUAN完成签到 ,获得积分10
10秒前
任鲂发布了新的文献求助10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559942
求助须知:如何正确求助?哪些是违规求助? 3986277
关于积分的说明 12342143
捐赠科研通 3656944
什么是DOI,文献DOI怎么找? 2014643
邀请新用户注册赠送积分活动 1049418
科研通“疑难数据库(出版商)”最低求助积分说明 937738