Ensemble transformer-based multiple instance learning to predict pathological subtypes and tumor mutational burden from histopathological whole slide images of endometrial and colorectal cancer

结直肠癌 子宫内膜癌 人工智能 病态的 集成学习 集合预报 计算机科学 医学 机器学习 模式识别(心理学) 病理 内科学 癌症
作者
Ching‐Wei Wang,Tzu-Chien Liu,Po-Jen Lai,Hikam Muzakky,Yu‐Chi Wang,Mu-Hsien Yu,Chia-Hua Wu,Tai‐Kuang Chao
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:99: 103372-103372 被引量:10
标识
DOI:10.1016/j.media.2024.103372
摘要

In endometrial cancer (EC) and colorectal cancer (CRC), in addition to microsatellite instability, tumor mutational burden (TMB) has gradually gained attention as a genomic biomarker that can be used clinically to determine which patients may benefit from immune checkpoint inhibitors. High TMB is characterized by a large number of mutated genes, which encode aberrant tumor neoantigens, and implies a better response to immunotherapy. Hence, a part of EC and CRC patients associated with high TMB may have higher chances to receive immunotherapy. TMB measurement was mainly evaluated by whole-exome sequencing or next-generation sequencing, which was costly and difficult to be widely applied in all clinical cases. Therefore, an effective, efficient, low-cost and easily accessible tool is urgently needed to distinguish the TMB status of EC and CRC patients. In this study, we present a deep learning framework, namely Ensemble Transformer-based Multiple Instance Learning with Self-Supervised Learning Vision Transformer feature encoder (ETMIL-SSLViT), to predict pathological subtype and TMB status directly from the H&E stained whole slide images (WSIs) in EC and CRC patients, which is helpful for both pathological classification and cancer treatment planning. Our framework was evaluated on two different cancer cohorts, including an EC cohort with 918 histopathology WSIs from 529 patients and a CRC cohort with 1495 WSIs from 594 patients from The Cancer Genome Atlas. The experimental results show that the proposed methods achieved excellent performance and outperforming seven state-of-the-art (SOTA) methods in cancer subtype classification and TMB prediction on both cancer datasets. Fisher's exact test further validated that the associations between the predictions of the proposed models and the actual cancer subtype or TMB status are both extremely strong (p<0.001). These promising findings show the potential of our proposed methods to guide personalized treatment decisions by accurately predicting the EC and CRC subtype and the TMB status for effective immunotherapy planning for EC and CRC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
4秒前
lyt发布了新的文献求助20
4秒前
橡皮鱼发布了新的文献求助10
5秒前
6秒前
阿夜完成签到 ,获得积分10
6秒前
lxwwwxl完成签到,获得积分10
7秒前
7秒前
文献无碍发布了新的文献求助10
7秒前
7秒前
裴之洽闻完成签到 ,获得积分10
8秒前
Della发布了新的文献求助10
9秒前
谢卓洋关注了科研通微信公众号
9秒前
9秒前
nalanfu发布了新的文献求助10
10秒前
Ei应助科研通管家采纳,获得10
10秒前
完美世界应助科研通管家采纳,获得10
10秒前
大尾巴白发布了新的文献求助10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
华仔应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
共享精神应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
11秒前
可爱的函函应助Bi8bo采纳,获得10
12秒前
13秒前
终梦应助这个真不懂采纳,获得10
13秒前
14秒前
默默善愁完成签到,获得积分10
14秒前
14秒前
14秒前
梦天完成签到,获得积分10
15秒前
JamesPei应助潇洒邴采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5322192
求助须知:如何正确求助?哪些是违规求助? 4463759
关于积分的说明 13891152
捐赠科研通 4355055
什么是DOI,文献DOI怎么找? 2392149
邀请新用户注册赠送积分活动 1385755
关于科研通互助平台的介绍 1355494