Simultaneously Producing H2 and H2O2 by Photocatalytic Water Splitting: Recent Progress and Future

分解水 光催化 可持续能源 纳米技术 半导体 计算机科学 材料科学 催化作用 工艺工程 生化工程 化学 可再生能源 电气工程 工程类 光电子学 生物化学
作者
Shuang Cao,Tong Sun,Yong Peng,Xianghui Yu,Qinzhu Li,Fan Lu Meng,Fan Yang,Han Wang,Yunhui Xie,Chun‐Chao Hou,Qiang Xü
出处
期刊:Small [Wiley]
卷期号:20 (45): e2404285-e2404285 被引量:22
标识
DOI:10.1002/smll.202404285
摘要

Abstract The solar‐driven overall water splitting (2H 2 O→2H 2 + O 2 ) is considered as one of the most promising strategies for reducing carbon emissions and meeting energy demands. However, due to the sluggish performance and high H 2 cost, there is still a big gap for the current photocatalytic systems to meet the requirements for practical sustainable H 2 production. Economic feasibility can be attained through simultaneously generating products of greater value than O 2 , such as hydrogen peroxide (H 2 O 2 , 2H 2 O→H 2 + H 2 O 2 ). Compared with overall water splitting, this approach is more kinetically feasible and generates more high‐value products of H 2 and H 2 O 2 . In several years, there has been an increasing surge in exploring the possibility and substantial progress has been achieved. In this review, a concise overview of the importance and underlying principles of PIWS is first provided. Next, the reported typical photocatalysts for PIWS are discussed, including commonly used semiconductors and cocatalysts, essential design features of these photocatalysts, and connections between their structures and activities, as well as the selected approaches for enhancing their stability. Then, the techniques used to quantify H 2 O 2 and the operando characterization techniques that can be employed to gain a thorough understanding of the reaction mechanisms are summarized. Finally, the current existing challenges and the direction needing improvement are presented. This review aims to provide a thorough summary of the most recent research developments in PIWS and sets the stage for future advancements and discoveries in this emerging area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
利奈唑胺完成签到,获得积分10
1秒前
WLX001完成签到 ,获得积分10
1秒前
Mike发布了新的文献求助10
1秒前
orixero应助QQ不需要昵称采纳,获得10
1秒前
lin发布了新的文献求助20
2秒前
5秒前
5秒前
5秒前
chen完成签到,获得积分10
6秒前
慢悠的蜗牛完成签到 ,获得积分10
7秒前
CCrain应助ajun采纳,获得10
8秒前
8秒前
Aurora发布了新的文献求助10
9秒前
sifvld完成签到,获得积分10
10秒前
彭于晏应助樱木没有花道采纳,获得10
10秒前
ppp发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
阔达源智完成签到,获得积分10
11秒前
11秒前
Orange应助iota采纳,获得10
11秒前
我是老大应助称心誉采纳,获得10
12秒前
LaTeXer应助每天100次采纳,获得200
13秒前
13秒前
13秒前
13秒前
14秒前
15秒前
15秒前
刘一安发布了新的文献求助10
15秒前
翁柔凤完成签到,获得积分10
17秒前
sui发布了新的文献求助10
17秒前
zhangzhang发布了新的文献求助10
18秒前
Jasper应助隐形的鸡翅采纳,获得10
18秒前
阔达源智发布了新的文献求助10
19秒前
坚定凝安发布了新的文献求助10
19秒前
开心大雁发布了新的文献求助10
19秒前
乐观的小松鼠完成签到,获得积分10
19秒前
爆米花应助懒羊羊采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662422
求助须知:如何正确求助?哪些是违规求助? 4842550
关于积分的说明 15099779
捐赠科研通 4820888
什么是DOI,文献DOI怎么找? 2580339
邀请新用户注册赠送积分活动 1534379
关于科研通互助平台的介绍 1492999